Purpose: Small-cell lung cancer (SCLC) is an aggressive neuroendocrine tumor with a high relapse rate, limited therapeutic options, and poor prognosis. We investigated the antitumor activity of AMG 757, a half-life extended bispecific T-cell engager molecule targeting delta-like ligand 3 (DLL3)—a target that is selectively expressed in SCLC tumors, but with minimal normal tissue expression. Experimental Design: AMG 757 efficacy was evaluated in SCLC cell lines and in orthotopic and patient-derived xenograft (PDX) mouse SCLC models. Following AMG 757 administration, changes in tumor volume, pharmacodynamic changes in tumor-infiltrating T cells (TILs), and the spatial relationship between the appearance of TILs and tumor histology were examined. Tolerability was assessed in nonhuman primates (NHPs). Results: AMG 757 showed potent and specific killing of even those SCLC cell lines with very low DLL3 expression (<1,000 molecules per cell). AMG 757 effectively engaged systemically administered human T cells, induced T-cell activation, and redirected T cells to lyse tumor cells to promote significant tumor regression and complete responses in PDX models of SCLC and in orthotopic models of established primary lung SCLC and metastatic liver lesions. AMG 757 was well tolerated with no AMG 757-related adverse findings up to the highest tested dose (4.5 mg/kg weekly) in NHP. AMG 757 exhibits an extended half-life in NHP, which is projected to enable intermittent administration in patients. Conclusions: AMG 757 has a compelling safety and efficacy profile in preclinical studies making it a viable option for targeting DLL3-expressing SCLC tumors in the clinical setting.
Talimogene laherparepvec, a new oncolytic immunotherapy, has been recently approved for the treatment of melanoma. Using a murine version of the virus, we characterized local and systemic antitumor immune responses driving efficacy in murine syngeneic models. The activity of talimogene laherparepvec was characterized against melanoma cell lines using an viability assay. Efficacy of OncoVEX (talimogene laherparepvec with the mouse granulocyte-macrophage colony-stimulating factor transgene) alone or in combination with checkpoint blockade was characterized in A20 and CT-26 contralateral murine tumor models. CD8 depletion, adoptive T-cell transfers, and Enzyme-Linked ImmunoSpot assays were used to study the mechanism of action (MOA) of systemic immune responses. Treatment with OncoVEX cured all injected A20 tumors and half of contralateral tumors. Viral presence was limited to injected tumors and was not responsible for systemic efficacy. A significant increase in T cells (CD3/CD8) was observed in injected and contralateral tumors at 168 hours. analyses showed these cytotoxic T lymphocytes were tumor-specific. Increased neutrophils, monocytes, and chemokines were observed in injected tumors only. Importantly, depletion of CD8 T cells abolished all systemic efficacy and significantly decreased local efficacy. In addition, immune cell transfer from OncoVEX-cured mice significantly protected from tumor challenge. Finally, combination of OncoVEX and checkpoint blockade resulted in increased tumor-specific CD8 anti-AH1 T cells and systemic efficacy. The data support a dual MOA for OncoVEX that involves direct oncolysis of injected tumors and activation of a CD8-dependent systemic response that clears injected and contralateral tumors when combined with checkpoint inhibition. .
In this report, we describe a vector system that specifically delivers transgene products to tumors following intravenous (i.v.) administration. The Escherichia coli cytosine deaminase (CD) gene was placed in the E3B region of the tumor-selective, replicationcompetent adenovirus ONYX-411, under the control of endogenous viral late gene regulatory elements. Thus, CD expression was directly coupled to the tumor-selective replication of the viral vector. In vitro, CD was expressed efficiently in various human cancer cell lines tested but not in cultured normal human cells, including human hepatocytes. Following i.v. administration into nude mice carrying human tumor xenografts, robust CD activity was detected only in tumors but not in liver or other normal tissues. Levels of CD activity in the tumors increased progressively following i.v. virus administration, correlating closely with virus replication in vivo. Subsequent administration of 5-fluorocytosine (5-FC) demonstrated a trend to improve the antitumor efficacy of these viruses in a mouse xenograft model, presumably due to the intratumoral conversion of 5-FC to the chemotherapeutic drug 5-fluorouracil. We show that the combination of a highly selective oncolytic virus, ONYX-411, with the strategic use of the viral E3B region for transgene insertion provides a powerful platform that allows for tumor-specific, persistent and robust transgene expression after i.v. administration. This technology provides an opportunity to enhance greatly both safety and efficacy of cancer gene therapy.
In nonsmall cell lung cancer (NSCLC), the threonine(790)-methionine(790) (T790M) point mutation of EGFR kinase is one of the leading causes of acquired resistance to the first generation tyrosine kinase inhibitors (TKIs), such as gefitinib and erlotinib. Herein, we describe the optimization of a series of 7-oxopyrido[2,3-d]pyrimidinyl-derived irreversible inhibitors of EGFR kinase. This led to the discovery of compound 24 which potently inhibits gefitinib-resistant EGFR(L858R,T790M) with 100-fold selectivity over wild-type EGFR. Compound 24 displays strong antiproliferative activity against the H1975 nonsmall cell lung cancer cell line, the first line mutant HCC827 cell line, and promising antitumor activity in an EGFR(L858R,T790M) driven H1975 xenograft model sparing the side effects associated with the inhibition of wild-type EGFR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.