SignificanceLeaf senescence is regulated in a complex manner, involving time-dependent interactions with developmental and environmental signals. Genetic screens have identified key regulators of senescence, particularly late-stage senescence regulators. Recently, time-course gene-expression and network analyses, mostly analyses of static networks, have predicted many senescence regulators. However, senescence is defined by time-evolving networks, involving the temporal transition of interactions among senescence regulators. Here, we present time-evolving networks of NAM/ATAF/CUC (NAC) transcription factors, central regulators of leaf senescence in Arabidopsis, via time-course gene-expression analysis of NACs in their mutants. These time-evolving networks revealed a unique regulatory module of NACs that controls the timely induction of senescence-promoting processes at a presenescent stage of leaf aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.