Bioinspired hydrogels have promising prospects in applications such as wearable devices, human health monitoring equipment, and soft robots due to their multifunctional sensing properties resembling natural skin. However, the preparation of intelligent hydrogels that provide feedback on multiple electronic signals simultaneously, such as human skin receptors, when stimulated by external contact pressure remains a substantial challenge. In this study, we designed a bioinspired hydrogel with multiple conductive capabilities by incorporating carbon nanotubes into a chelate of calcium ions with polyacrylic acid and sodium alginate. The bioinspired hydrogel consolidates self-healing ability, stretchability, 3D printability, and multiple conductivities. It can be fabricated as an integrated strain sensor with simultaneous piezoresistive and piezocapacitive performances, exhibiting sensitive (gauge factor of 6.29 in resistance mode and 1.25 kPa–1 in capacitance mode) responses to subtle pressure changes in the human body, such as finger flexion, knee flexion, and respiration. Furthermore, the bioinspired strain sensor sensitively and discriminatively recognizes the signatures written on it. Hence, we expect our ideas to provide inspiration for studies exploring the use of advanced hydrogels in multifunctional skin-like smart wearable devices.
Lightweight, ultra-flexible, and robust crosslinked transition metal carbide (Ti3C2 MXene) coated polyimide (PI) (C-MXene@PI) porous composites are manufactured via a scalable dip-coating followed by chemical crosslinking approach. In addition to the hydrophobicity, anti-oxidation and extreme-temperature stability, efficient utilization of the intrinsic conductivity of MXene, the interfacial polarization between MXene and PI, and the micrometer-sized pores of the composite foams are achieved. Consequently, the composites show a satisfactory X-band electromagnetic interference (EMI) shielding effectiveness of 22.5 to 62.5 dB at a density of 28.7 to 48.7 mg cm−3, leading to an excellent surface-specific SE of 21,317 dB cm2 g−1. Moreover, the composite foams exhibit excellent electrothermal performance as flexible heaters in terms of a prominent, rapid reproducible, and stable electrothermal effect at low voltages and superior heat performance and more uniform heat distribution compared with the commercial heaters composed of alloy plates. Furthermore, the composite foams are well attached on a human body to check their electromechanical sensing performance, demonstrating the sensitive and reliable detection of human motions as wearable sensors. The excellent EMI shielding performance and multifunctionalities, along with the facile and easy-to-scalable manufacturing techniques, imply promising perspectives of the porous C-MXene@PI composites in next-generation flexible electronics, aerospace, and smart devices.
Silicon-based materials are the desirable anodes for next-generation lithium-ion batteries; however, the large volume change of Si during the charging/discharging process causes electrode fracture and an unstable solid–electrolyte interphase (SEI) layer, which severely impair their stability and Coulombic efficiency. Herein, a bundle of silicon nanoparticles is encapsulated in robust micrometer-sized MXene frameworks, in which the MXene nanosheets are precrumpled by capillary compression force to effectively buffer the stress induced by the volume change, and the abundant covalent bonds (Ti–O–Ti) between adjacent nanosheets formed through a facile thermal self-cross-linking reaction further guarantee the robustness of the MXene architecture. Both factors stabilize the electrode structure. Moreover, the abundant fluorine terminations on MXene nanosheets contribute to an in situ formation of a highly compact, durable, and mechanically robust LiF-rich SEI layer outside the frameworks upon cycling, which not only shuts down the parasitic reaction between Si and an organic electrolyte but also enhances the structural stability of MXene frameworks. Benefiting from these merits, the as-prepared anodes deliver a high specific capacity of 1797 mA h g–1 at 0.2 A g–1 and a high capacity retention of 86.7% after 500 cycles at 2 A g–1 with an average Coulombic efficiency of 99.6%. Significantly, this work paves the way for other high-capacity electrode materials with a strong volume effect.
Natural structure‐forming processes found in biological systems are fantastic and perform at ambient temperatures, in contrast with anthropogenic technologies that commonly require harsh conditions. A new research direction “bioprocess‐inspired fabrication” is proposed to develop novel fabrication techniques for advanced materials. Enamel, an organic–inorganic composite biomaterial with outstanding mechanical performance and durability, is formed by repeating the basic blocks consisting of columnar hydroxyapatite or fluorapatite and an organic matrix. Inspired by the enamel formation process, a microscale additive manufacturing method is proposed for achieving a multilayered organic–inorganic columnar structure. In this approach, rutile titanium dioxide (TiO2) nanorods, polymers, and graphene oxide (GO) are sequentially assembled in a layer‐by‐layer fashion to form an organic–inorganic structure. In particular, GO serves as a substrate for TiO2 nanorods and interacts with polymers, jointly leading to the strength of the composites. Impressively, this enamel‐like structure material has hardness (1.56 ± 0.05 GPa) and ultrahigh Young's modulus (81.0 ± 2.7 GPa) comparable to natural enamel, and viscoelastic property (0.76 ± 0.12 GPa) superior to most solid materials. Consequently, this biomimetic synthetic approach provides an in‐depth understanding for the formation process of biomaterials and also enables the exploration of a new avenue for the preparation of organic–inorganic composite materials.
The high-capacity silicon anode is regarded as a promising electrode material for next-generation lithium-ion batteries. Unfortunately, its practical application is still severely hindered by electrode fracture and unstable solid electrolyte interphase during cycling. Herein, we design a structure of encapsulating silicon in a robust “janus shell”, in which an internal graphene shell with sufficient void space is used to absorb the mechanical stress induced by volume expansion, and the conformal carbon outer shell is introduced to strongly bond the loosely stacked graphene shell and simultaneously seal the nanopores on the surface. With the ultrastable janus carbon shell, the excellent structural integrity of the electrode and stable solid electrolyte interphase layer could be effectively preserved, resulting in an impressive cycling behavior. Indeed, the as-synthesized anodes demonstrate superior cycle stability and excellent rate performance, delivering a high reversible capacity of 1416 mA h g–1 at a current density of 0.2 A g–1 and 852 mA h g–1 at a high current density of 5 A g–1. Remarkably, the superior capacity retention of 88.5% could be achieved even after 400 cycles at a high current density of 2 A g–1. More importantly, this work opens up a novel avenue to address high-capacity anodes with a large volume change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.