Optical sensing that integrates communication and sensing functions is playing a more and more important role in both military and civil applications. Incorporating optical sensing and optical communication, optical sensor networks (OSNs) that undertake the task of high-speed and large-capacity applications and sensing data transmissions have become an important communication infrastructure. However, multiple failures and disasters in OSNs can cause serious sensing provisioning problems. To ensure uninterrupted sensing data transmission, survivability has always been an important research emphasis. This paper focuses on the survivable deployment of OSNs against multiple failures and disasters. We first review and evaluate the existing survivability technologies developed for or applied to OSNs, such as fiber bus protection, self-healing architecture, and 1 + 1 protection. We then elaborate on the disaster-resilient survivability requirement of OSNs. Moreover, we propose a new k-node (edge) sensing connectivity concept, which ensures the connectivity between sensing data and users. Based on k-node (edge) sensing connectivity, the disaster-resilient survivability technologies are developed. The key technologies necessary to implement k-node (edge) sensing connectivity are also elaborated. Recently, artificial intelligence (AI) has developed rapidly. It can be used to improve the survivability of OSNs. This paper details potential development directions of survivability technologies of optical sensing in OSNs employing AI.
Harmony search algorithm is utilized to solve multi-faults localization problem in coexisting radio and optical wireless networks. When traffic load is around 500 Erlang, the localization accuracy achieves 97.5%, and localization time is within 0.94s.
A connectivity-aware end-to-end multi-connection partial protection scheme is proposed to ensure reliable transmission under acceptable QoS. A genetic algorithm based heuristic algorithm is developed to greatly reduce blocking probability and resource consumption than full protection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.