The dairy goat is one of the earliest dairy livestock species, which plays an important role in the economic development, especially for developing countries. With the development of agricultural civilization, dairy goats have been widely distributed across the world. However, few studies have been conducted on the specific characteristics of dairy goat. In this study, we collected the whole-genome data of 89 goat individuals by sequencing 48 goats and employing 41 publicly available goats, including five dairy goat breeds (Saanen, Nubian, Alpine, Toggenburg, and Guanzhong dairy goat; n = 24, 15, 11, 6, 6), and three goat breeds (Guishan goat, Longlin goat, Yunshang Black goat; n = 6, 15, 6). Through compared the genomes of dairy goat and non-dairy goat to analyze genetic diversity and selection characteristics of dairy goat. The results show that the eight goats could be divided into three subgroups of European, African, and Chinese indigenous goat populations, and we also found that Australian Nubian, Toggenburg, and Australian Alpine had the highest linkage disequilibrium, the lowest level of nucleotide diversity, and a higher inbreeding coefficient, indicating that they were strongly artificially selected. In addition, we identified several candidate genes related to the specificity of dairy goat, particularly genes associated with milk production traits (GHR, DGAT2, ELF5, GLYCAM1, ACSBG2, ACSS2), reproduction traits (TSHR, TSHB, PTGS2, ESR2), immunity traits (JAK1, POU2F2, LRRC66). Our results provide not only insights into the evolutionary history and breed characteristics of dairy goat, but also valuable information for the implementation and improvement of dairy goat cross breeding program.
As relatively new members of the non-coding RNA family, circRNAs play important roles in a variety of biological processes. However, the temporal expression pattern and the function of circRNAs during sheep skeletal muscle development remains unclear. This study aimed to identify circRNAs related to sheep skeletal muscle development and explore their roles in myoblast proliferation. The circRNA expression profiles of longissimus dorsi of sheep from F90, L30, and A3Y were obtained by the RNA-seq method. The function and mechanisms of the novel circCHRNG in muscle satellite cell proliferation were explored using CCK-8 assay, Western blot, qPCR, and dual-luciferase reporter assay. We identified 12,375 circRNAs, including 476, 133, and 233 DEcircRNAs found among three comparative groups. KEGG results showed that DEcircRNAs were enriched in muscle contraction, the regulation of cell proliferation, and the AMPK, insulin, and PI3K-Akt signaling pathways. Notably, a novel circRNA, termed circRNA CHRNG, acts as a miR-133 sponge to promote skeletal muscle satellite cell proliferation. Our study provides a systematic description of circRNAs of ovine skeletal muscle across fetal, lamb, and adult stages. GO and KEGG analyses showed that DEcircRNAs were enriched in multiple pathways associated with muscle development, such as the PI3K-Akt and AMPK signaling pathways. In addition, we propose that circCHRNG acts as a miR-133 sponge to upregulate the expression levels of SRF and MEF2A, thereby promoting myoblast proliferation.
Muscle development is a complex biological process involving an intricate network of multiple factor interactions. Through the analysis of transcriptome data and molecular biology confirmation, this study aims to reveal the molecular mechanism underlying sheep embryonic skeletal muscle development. The RNA sequencing of embryos was conducted, and microRNA (miRNA)-mediated competitive endogenous RNA (ceRNA) networks were constructed. qRT-PCR, siRNA knockdown, CCK-8 assay, scratch assay, and dual luciferase assay were used to carry out gene function identification. Through the analysis of the ceRNA networks, three miRNAs (miR-493-3p, miR-3959-3p, and miR-410-5p) and three genes (TEAD1, ZBTB34, and POGLUT1) were identified. The qRT-PCR of the DE-miRNAs and genes in the muscle tissues of sheep showed that the expression levels of the TEAD1 gene and miR-410-5p were correlated with the growth rate. The knockdown of the TEAD1 gene by siRNA could significantly inhibit the proliferation of sheep primary embryonic myoblasts, and the expression levels of SLC1A5, FoxO3, MyoD, and Pax7 were significantly downregulated. The targeting relationship between miR-410-5p and the TEAD1 gene was validated by a dual luciferase assay, and miR-410-5p can significantly downregulate the expression of TEAD1 in sheep primary embryonic myoblasts. We proved the regulatory relationship between miR-410-5p and the TEAD1 gene, which was related to the proliferation of sheep embryonic myoblasts. The results provide a reference and molecular basis for understanding the molecular mechanism of embryonic muscle development.
Growth traits are influential factors that significantly affects the development of the sheep industry. A previous TMT proteomic analysis found that a key protein in the HIF signaling pathway, ARNT, may influence embryonic skeletal muscle growth and development in sheep. The purpose of this study was to better understand the association between the polymorphisms of ARNT and growth traits of sheep, and the potential function of ARNT. Real-time qPCR (qRT-PCR) of ARNT was carried out to compare its expression in different developmental stages of the muscle tissues and primary myoblasts in the Hu, Chinese merino, and Gangba sheep. The genetic variance of ARNT was detected using the Illumina Ovine SNP 50 K and 600 K BeadChip in the Hu and Ujimqin sheep populations, respectively. The CDS sequence of the ARNT gene was cloned in the Hu sheep using PCR technology. Finally, bioinformatic analytical methods were applied to characterize the genes and their hypothetical protein products. The qRT-PCR results showed that the ARNT gene was expressed significantly in the Chinese merino embryo after 85 gestation days (D85) (p < 0.05). Additionally, after the sheep were born, the expression of ARNT was significant at the weaning stage of the Hu sheep (p < 0.01). However, there was no difference in the Gangba sheep.In addition, six SNP loci were screened using 50 K and 600 K BeadChip. We found a significant association between rs413597480 A > G and the Hu sheep weight at weaning and backfat thickness in the 5-month-old sheep (p < 0.05), and four SNP loci (rs162298018 G > C, rs159644025 G > A, rs421351865 G > A, and rs401758103 A > G) were also associated with growth traits in the Ujimqin sheep (p < 0.05). Interestingly, we found that a G > C mutation at 1948 bp in the cloned ARNT CDS sequence of the Hu sheep was the same locus mutation as rs162298018 G > C identified using the 600 K BeadChip, which resulted in a nonconservative missense point mutation, leading to a change from proline to alanine and altering the number of DNA, protein-binding sites, and the α-helix of the ARNT protein. There was a strong linkage disequilibrium between rs162298018 G > C and rs159644025 G > A, and the ARNT protein was conserved among the goat, Hu sheep, and Texel sheep. And, we propose that a putative molecular marker for growth and development in sheep may be the G > C mutation at 1,948 bp in the CDS region of the ARNT gene. Our study systematically analyzed the expression, structure, and function of the ARNT gene and its encoded proteins in sheep. This provides a basis for future studies of the regulatory mechanisms of the ARNT gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.