Oral propranolol hydrochloride has been the first-line treatment for infantile hemangioma (IH), whereas systemic exposure to propranolol has the potential of causing serious adverse reactions. Dermal delivery of propranolol is preferable due to high local drug concentration and fewer adverse effects. However, propranolol hydrochloride (BCS class I) is highly hydrophilic and has difficulty in penetrating the stratum corneum (SC) barrier. Dissolving microneedles (MNs) are an efficient tool for overcoming the barrier of the SC and enhancing dermal drug delivery. In this study, propranolol hydrochloride-loaded dissolving MNs were fabricated by using hyaluronic acid and polyvinyl pyrrolidone as matrix materials. Controllable drug loading in needle tips was achieved by a two-step casting procedure. The needles were good in mechanical strength for penetrating the SC while presented excellent dissolving capability for releasing propranolol hydrochloride. In comparison with the solution counterpart, irrespective of being applied to intact skin or solid MNs-pretreated skin, dissolving MNs significantly increased the permeability and skin retention of propranolol. In conclusion, dissolving MNs could be a potential approach for enhancing dermal delivery of propranolol to treat IH.
Chronic infection with hepatitis B virus (HBV) is associated with liver cirrhosis and hepatocellular carcinoma. Upon infection of hepatocytes, HBV covalently closed circular DNA (cccDNA) exists as histone-bound mini-chromosome, subjected to transcriptional regulation similar to chromosomal DNA. Here we identify high mobility group AT-hook 1 (HMGA1) protein as a positive regulator of HBV transcription that binds to a conserved ATTGG site within enhancer II/core promoter (EII/Cp) and recruits transcription factors FOXO3α and PGC1α. HMGA1-mediated upregulation of EII/Cp results in enhanced viral gene expression and genome replication. Notably, expression of endogenous HMGA1 was also demonstrated to be upregulated by HBV, which involves HBV X protein (HBx) interacting with SP1 transcription factor to activate HMGA1 promoter. Consistent with these in vitro results, chronic hepatitis B patients in immune tolerant phase display both higher intrahepatic HMGA1 protein levels and higher serum HBV markers compared to patients in inactive carrier phase. Finally, using a mouse model of HBV persistence, we show that targeting endogenous HMGA1 through RNA interference facilitated HBV clearance. These data establish HMGA1 as an important positive regulator of HBV that is reciprocally upregulated by HBV via HBx and also suggest the HMGA1-HBV positive feedback loop as a potential therapeutic target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.