a b s t r a c tA full-length cDNA encoding an anticoagulant peptide, named AduNAP4, was cloned and identified from the human hookworm Ancylostoma duodenale. AduNAP4 has 104 amino acids including a predicted 23-residue signal peptide and shows 650% similarity with other known nematode anticoagulant protein/peptide (NAP). AduNAP4 is extremely efficient at prolonging the activated partial thromboplastin time, and is an inhibitor of both fXa (K i = 7.34 ± 1.74 nM) and fXIa (K i = 42.45 ± 3.25 nM). No fXIa inhibitor has previously been described from other blood-feeding animals. Our results suggest that hookworms have evolved a potent mechanism that interferes with coagulation by inhibition of fXIa to facilitate its blood-feeding lifestyle.
Despite the fact that an InGaN/GaN superlattice (SL) is useful for enhancing the performance of a GaN-based light-emitting diode (LED), its role in improving the efficiency of green LEDs remains an open question. Here, we investigate the influence of a V-pits-embedded InGaN/GaN SL on optical and electrical properties of GaN-based green LEDs. We recorded a sequence of light emission properties of InGaN/GaN multiple quantum wells (MQWs) grown on a 0- and 24-pair InGaN/GaN SL by using scanning electron microscopy (SEM) in combination with a room temperature cathodoluminescence (CL) measurement, which demonstrated the presence of a potential barrier formed by the V-pits around threading dislocations (TDs). We find that an increase in V-pit diameter would lead to the increase of V-pit potential barrier height. Our experimental data suggest that a V-pits-embedded, 24-pair InGaN/GaN SL can effectively suppress the lateral diffusion of carriers into non-recombination centers. As a result, the external quantum efficiency (EQE) of green LEDs is improved by 29.6% at an injection current of 20 mA after implementing the V-pits-embedded InGaN/GaN SL layer. In addition, a lower reverse leakage current was achieved with larger V-pits.
BackgroundIsodicentric chromosomes are the most frequent structural aberrations of human Y chromosome, and usually present in mosaicism with a 45, X cell line. Several cytogenetic techniques have been used for diagnosing of uncommon abnormal sex chromosome abnormalities in prenatal cases.Case presentationA 26-year-old healthy woman was referred to our centre at 24 weeks of gestation age. Ultrasound examination indicated she was pregnant with imbalanced development of twins. Amniocentesis was referred to the patient for further genetic analyses. Quantitative Fluorescent Polymerase Chain Reaction (QF-PCR) indicated the existence of an extra Y chromosome or a structurally abnormal Y chromosome in primary amniotic cells. Chromosome microarray (CMA) analysis based on Comparative Genomic Hybridization (aCGH) platform was performed and identified a 10.1 Mb deletion on Y chromosome in 8-days cultured amniotic cells. Combined with the data of QF-PCR and aCGH, karyotyping and fluorescence in situ hybridization (FISH) revealed a mosaic cell line of 45,X[27]/46,X, idic(Y)(q11.22) [14] in fetus.The karyotyping analysis of cord blood sample was consistent with amniotic cells. The parental karyotypes were normal, which indicated this mosaic case of isodicentric Y (idicY) chromosomes of the fetus was a de novo case.ConclusionSeveral approaches have been used for the detection of numerical and structural chromosomal alterations of on prenatal cases. Our report supported the essential role of incorporating multiple genetic techniques in prenatal diagnosing and genetic counseling of potential complex sex chromosomal rearrangements.
These data highlight an important role of HSF1 in proliferation, migration and invasion of osteosarcoma cells. Moreover, the expression of HSF1 was associated with prognosis in osteosarcoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.