Although gradients play an essential role in guiding the function of tissues, achieving synchronous regeneration of gradient tissue injuries remains a challenge. Here, a gradient bimetallic (Cu and Zn) ion–based hydrogel was first constructed via the one-step coordinative crosslinking of sulfhydryl groups with copper and zinc ions for the microstructure reconstruction of the tendon-to-bone insertion. In this bimetallic hydrogel system, zinc and copper ions could not only act as crosslinkers but also provide strong antibacterial effects and induce regenerative capacity in vitro. The capability of hydrogels in simultaneously promoting tenogenesis and osteogenesis was further verified in a rat rotator cuff tear model. It was found that the Cu/Zn gradient layer could induce considerable collagen and fibrocartilage arrangement and ingrowth at the tendon-to-bone interface. Overall, the gradient bimetallic ion–based hydrogel ensures accessibility and provides opportunities to regenerate inhomogeneous tissue with physiological complexity or interface tissue.
In OSAS patients, the vessel densities in the peripapillary and parafoveal areas decreased with greater disease severity, and the decrease was more prominent in the peripapillary area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.