Objective-Our laboratory has previously demonstrated that 15-lipoxygenase (15-LO)/15-hydroxyeicosatetraenoic acid (15-HETE) is involved in hypoxic pulmonary arterial hypertension. Chronic hypoxia-induced vascular inflammation has been considered as an important stage in the development of pulmonary arterial hypertension. Here, we determined the contribution of 15-HETE in the hypoxia-induced pulmonary vascular inflammation. Approach and Results-Chronic hypoxia-induced monocyte/macrophage infiltration and the expressions of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 were analyzed in hypoxic rat model and cultured pulmonary arterial endothelium cells using immunochemistry methods. We found that monocyte/macrophage infiltration and the expressions of intercellular adhesion molecules under hypoxia were markedly inhibited by 15-HETE inhibitors or 15-LO1/2 small interfering RNA. In addition, exogenous 15-HETE enhanced the expression of both adhesion molecules in pulmonary arterial endothelium cells in a time-dependent manner. Hypoxia-induced 15-LO1/2 expression in rat pulmonary arterial endothelium cells was significantly abolished by nuclear factor-κB inhibitors. Meanwhile, nuclear factor-κB activity was enhanced prominently by the 15-LO1/2 product, 15-HETE, suggesting a positive feedback mechanism. Conclusions-Taken together, our results suggest that chronic hypoxia promotes monocyte infiltration into the vasculature and adhesion molecules upregulation in pulmonary arterial endothelium cells via a positive interaction between 15-LO/15-HETE and nuclear factor-κB. Our study revealed a novel mechanism underlying hypoxia-induced pulmonary arterial inflammation and suggested new therapeutic strategies targeting 15-LO/15-HETE and nuclear factor-κB in the treatment of pulmonary arterial hypertension. (Arterioscler Thromb Vasc Biol. 2013;33:971-979.)
Epoxyeicosatrienoic acids (EETs), cytochrome P450-derived metabolites of arachidonic acid, have been reported to increase intracellular calcium concentration in aortic vascular smooth muscle cells (SMCs). As EETs are labile, we synthesized a new stable urea EET analog with agonist and soluble epoxide hydrolase (sEH) inhibitor properties. We refer to this analog, 12-(3-hexylureido)dodec-8-enoic acid, as 8-HUDE. Measuring tension of vascular rings, intracellular calcium signaling by confocal laser scanning microscopy and gene expression by reverse-transcription-PCR and western blots, we examined the effects of 8-HUDE on pulmonary vascular tone and calcium signaling in rat pulmonary artery (PA) SMCs (PASMCs). 8-HUDE increased the tension of rat PAs to 145% baseline, whereas it had no effect on the tension of mesenteric arteries (MAs). The 8-HUDE-induced increase in vascular tone was abolished by removal of extracellular Ca2+ or by pretreatment with either La3+ or SKF96365, which are inhibitors of canonical transient receptor potential channels (TRPCs). Furthermore, 8-HUDE-evoked increases in [Ca2+]i in PASMCs could be blunted by inhibition of TRPC with SKF96365, removal of extracellular calcium or depletion of intracellular calcium stores with caffeine, cyclopiazonic acid or 2-aminoethoxydiphenyl borate, but not by the voltage-activated calcium channel blocker nifedipine. In addition to immediate effects on calcium signaling, 8-HUDE upregulated the expression of TRPC1 and TRPC6 at both mRNA and protein levels in rat PASMCs, whereas it suppressed the expression of sEH. Our observations suggest that 8-HUDE increases PA vascular tone through increased release of calcium from intracellular stores, enhanced [Ca2+]i influx in PASMCs through store-operated Ca2+ channels and modulated the expression of TRPC and sEH proteins in a proconstrictive manner.
Peroxisome proliferator activated receptor gamma coactivator 1α (PGC-1α) induced by hypoxia regulates mitochondrial biogenesis and oxidative stress. However, the potential role of PGC-1α in hypoxia-promoted proliferation of pulmonary arterial vascular smooth muscle cells (PASMCs) is completely unknown. In this study, we found that hypoxia significantly induced the expression of PGC-1α in cultured PASMCs and activated mitochondrial biogenesis through upregulation of nuclear respiratory factor-1 and mitochondria transcription factor A in a time-dependent manner. Knockdown of PGC-1α by siRNA abrogated hypoxia-induced PASMCs proliferation via the downregulation of PCNA, cyclinA, and cyclinE. Furthermore, we observed that PI3K/Akt signaling pathway was involved in hypoxia induced PGC-1α expression and PASMCs proliferation. Taken together, these datas reveal PGC-1α as the key regulator to mediate mitochondrial biogenesis and the proliferation of PASMCs at an early stage of hypoxic exposure. This process might bring to light a potential adaptive mechanism for PASMCs to minimize hypoxic damage and our novel findings provide new insight into the development of hypoxic pulmonary hypertension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.