Accurate and current information has been highlighted across the globe as a critical requirement for the COVID-19 pandemic response. To address this need, many interactive dashboards providing a range of different information about COVID-19 have been developed. A similar tool in Australia containing current information about COVID-19 could assist general practitioners and public health responders in their pandemic response efforts. The COVID-19 Real-time Information System for Preparedness and Epidemic Response (CRISPER) has been developed to provide accurate and spatially explicit real-time information for COVID-19 cases, deaths, testing and contact tracing locations in Australia. Developed based on feedback from key users and stakeholders, the system comprises three main components: (1) a data engine; (2) data visualization and interactive mapping tools; and (3) an automated alert system. This system provides integrated data from multiple sources in one platform which optimizes information sharing with public health responders, primary health care practitioners and the general public.
Foot-mounted micro-electromechanical systems (MEMS) inertial sensors based on pedestrian navigation can be used for indoor localization. We previously developed a novel zero-velocity detection algorithm based on the variation in speed over a gait cycle, which can be used to correct positional errors. However, the accumulation of heading errors cannot be corrected and thus, the system suffers from considerable drift over time. In this paper, we propose a map-matching technique based on conditional random fields (CRFs). Observations are chosen as positions from the inertial navigation system (INS), with the length between two consecutive observations being the same. This is different from elsewhere in the literature where observations are chosen based on step length. Thus, only four states are used for each observation and only one feature function is employed based on the heading of the two positions. All these techniques can reduce the complexity of the algorithm. Finally, a feedback structure is employed in a sliding window to increase the accuracy of the algorithm. Experiments were conducted in two sites with a total of over 450 m in travelled distance and the results show that the algorithm can efficiently improve the long-term accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.