Abstract. Oil and natural gas (O&NG) exploration presents a significant source of atmospheric volatile organic compounds (VOCs), which are central players of tropospheric chemistry and contribute to formations of ozone (O3) and secondary organic aerosols. The impacts of O&NG extraction on regional air quality have been investigated in recent years in North America, but have long been overlooked in China. To assess the impacts of O&NG exploration on tropospheric O3 and regional air quality in China, intensive field observations were conducted during February–March and June–July 2017 in the Yellow River delta, an oil extraction region in northern China. Very high concentrations of ambient VOCs were observed at a rural site, with the highest alkane mixing ratios reaching 2498 ppbv. High-O3 episodes were not encountered during wintertime but were frequently observed in summer. The emission profiles of VOCs from the oil fields were directly measured for the first time in China. The chemical budgets of ROx radicals and O3 were dissected with a detailed chemical box model constrained by in situ observations. The highly abundant VOCs facilitated strong atmospheric oxidation capacity and O3 formation in the region. Oxygenated VOCs (OVOCs) played an essential role in the ROx primary production, OH loss, and radical recycling. Photolysis of OVOCs, O3, and HONO as well as ozonolysis reactions of unsaturated VOCs were major primary sources of ROx. NOx was the limiting factor of radical recycling and O3 formation. This study underlines the important impacts of O&NG extraction on atmospheric chemistry and regional air quality in China.
The anterior cingulate cortex (ACC) has long been thought to regulate conflict between an object of attention and distractors during goal-directed sustained attention. However, it is unclear whether ACC serves to sustained attention itself. Here, we developed a task in which the time course of sustained attention could be controlled in rats. Then, using pharmacological lesion experiments, we employed it to assess function of ACC in sustained attention. We then recorded neuronal activity in ACC using multichannel extracellular recording techniques and identified specific ACC neurons persistently activated during the period of attention. Further experiments showed that target modality had minimal influence on the neuronal activity, and distracting external sensory input during the attention period did not perturb persistent neuronal activity. Additionally, minimal trial-to-trial variability in neuronal activity observed during sustained attention supports a role for ACC neurons in that behavior. Therefore, we conclude that the ACC neuronal activity correlates with sustained attention.The ability to maintain attention is fundamental to daily life, allowing human beings to concentrate cognitive faculties on critical tasks over prolonged periods of time 1,2 . Given that our environment is often complex, the brain chooses what to process over a period of time until a task is complete. Deficits in sustained attention, however, affect a large number of people, especially children with attention deficit hyperactivity disorder (ADHD), leading to difficulties in learning and in social and affective functions. Therefore, it is critical to identify neuronal mechanisms underlying sustained attention.Many lines of evidence from studies of humans 3-8 , other primates 9,10 , and rodents 11-13 indirectly support the idea that the anterior cingulate cortex (ACC) functions in sustained attention. Those reports indicate that the ACC is recruited to regulate conflict between an object of attention and distractors during goal-directed sustained attention [3][4][5]7,10 . However, some argue that attention and conflict regulation are processed separately 14 , while others propose that the ACC encodes both preparatory attention and error detection [11][12][13] , and also functions in predicting upcoming events 7,9 . Using a three-choice serial reaction time task in rats, Totah and colleagues demonstrated that a subset of ACC neurons was recruited in preparatory attention 11 . In addition, Weissman and colleagues found that reduced ACC activity accounted for attention lapses 15 . Furthermore, analysis of event-related potentials (ERPs) suggests that the contingent negative variation (CNV) is caused by sustained attention 16,17 and derived primarily from ACC activity 8 . Nonetheless, it remains unknown whether ACC neurons are required for maintenance of attention. Given that CNV activity persists in sustained attention, it is reasonable to predict that at least a group of ACC neurons are consistently activated or suppressed during attentio...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.