The Visual Object Tracking challenge VOT2019 is the seventh annual tracker benchmarking activity organized by the VOT initiative. Results of 81 trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The evaluation included the standard VOT and other popular methodologies for short-term tracking analysis as well as the standard VOT methodology for long-term tracking analysis. The VOT2019 challenge was composed of five challenges focusing on different tracking domains: (i) VOT-ST2019 challenge focused on short-term tracking in RGB, (ii) VOT-RT2019 challenge focused on "real-time" shortterm tracking in RGB, (iii) VOT-LT2019 focused on longterm tracking namely coping with target disappearance and reappearance. Two new challenges have been introduced: (iv) VOT-RGBT2019 challenge focused on short-term tracking in RGB and thermal imagery and (v) VOT-RGBD2019 challenge focused on long-term tracking in RGB and depth imagery. The VOT-ST2019, VOT-RT2019 and VOT-LT2019 datasets were refreshed while new datasets were introduced for VOT-RGBT2019 and VOT-RGBD2019. The VOT toolkit has been updated to support both standard shortterm, long-term tracking and tracking with multi-channel imagery. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website 1 .
Abstract:Rolling bearings are key components of rotary machines. To ensure early effective fault diagnosis for bearings, a new rolling bearing fault diagnosis method based on variational mode decomposition (VMD) and an improved kernel extreme learning machine (KELM) is proposed in this paper. A fault signal is decomposed via VMD to obtain the intrinsic mode function (IMF) components, and the approximate entropy (ApEn) of the IMF component containing the main fault information is calculated. An eigenvector is created from the approximate entropy of each component. A bearing diagnosis model is created via a KELM; the KELM parameters are optimized using the particle swarm optimization (PSO) algorithm to obtain a KELM diagnosis model with optimal parameters. Finally, the effectiveness of the diagnosis method proposed in this paper is verified via a fan bearing fault diagnosis test. Under identical conditions, the result is compared with the results obtained using a back propagation (BP) neural network, a conventional extreme learning machine (ELM), and a support vector machine (SVM). The test result shows that the method proposed in this paper is superior to the other three methods in terms of diagnostic accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.