The most recent developments and future perspectives of porous ferroelectric materials for energy technologies are systematically discussed and summarized.
Platform trials are multiarm clinical studies that allow the addition of new experimental arms after the activation of the trial. Statistical issues concerning “adding new arms”, however, have not been thoroughly discussed. This work was motivated by a “two-period” pediatric osteosarcoma study, starting with two experimental arms and one control arm and later adding two more pre-planned experimental arms. The common control arm will be shared among experimental arms across the trial. In this paper, we provide a principled approach, including how to modify the critical boundaries to control the family-wise error rate as new arms are added, how to re-estimate the sample sizes and provide the optimal control-to-experimental arms allocation ratio, in terms of minimizing the total sample size to achieve a desirable marginal power level. We examined the influence of the timing of adding new arms on the design’s operating characteristics, which provides a practical guide for deciding the timing. Other various numerical evaluations have also been conducted. A method for controlling the pair-wise error rate (PWER) has also been developed. We have published an R package, PlatformDesign, on CRAN for practitioners to easily implement this platform trial approach. A detailed step-by-step tutorial is provided in Appendix A.2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.