Traditional swash plates generally have numerous parts, which may result in the abrasion of key parts. In this paper, to avoid the problems of traditional swash plates, a low-cost and high-reliability rotor micro-aerial vehicle integrated attitude-adjustment mechanism (IAAM) is designed based on compliant mechanism theory. The mechanism is composed of a series of curved plates and connecting convex plates. In this context, the relationship of the loads and deformations of a cantilever curved plate is analytically determined. Meanwhile, the geometrical parameters of the IAAM are optimized to the minimum mass by a genetic algorithm. The performance of the optimized IAAM is verified by finite element analysis. Modal and static analyses are performed to ensure that the mechanism meets the requirements of the flight process of the aircraft. The designed attitude adjustment mechanism reduces the complexity of the structure and installation and improves the structural reliability. Furthermore, this mechanism can be 3D printed, thus reducing production costs and improving production efficiency.
In this paper, we proposed a Regular Tetrahedral Array (RTA) to cope with various types of sensors expected in Ultra-Wideband (UWB) localization requiring all-directional detection capability and high accuracy, such as indoor Internet-of-Things (IoT) devices at diverse locations, UAVs performing aerial navigation, collision avoidance and takeoff/landing guidance. The RTA is deployed with four synchronized Ultra-Wideband (UWB) transceivers on its vertexes and configured with arbitrary aperture. An all-directional DOA estimation algorithm using combined TDoA and wrapped PDoA was conducted. The 3D array RTA was decomposed into four planar subarrays solved as phased Uniform Circular Array (UCA) respectively. A new cost function based on geometric identical and variable neighborhood search strategy using TDoA information was proposed for ambiguity resolution. The results of simulation and numerical experiments demonstrated excellent performance of the proposed RTA and corresponding algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.