We investigate a general class of electromagnetic devices created with any continuous transformation functions by rigorously calculating the analytical expressions of the electromagnetic field in the whole space. Some interesting phenomena associated with these transformation devices, including the invisibility cloaks, concentrators, and field rotators, are discussed. By carefully choosing the transformation function, we can realize cloaks, which are insensitive to perturbations at both the inner and outer boundaries. Furthermore, we find that when the coating layer of the concentrator is realized with left-handed materials, energy will circulate between the coating and the core, and the energy transmitted through the core of the concentrator can be much bigger than that transmitted through the concentrator. Therefore, such concentrator is also a power flux enhancer. Finally, we propose a spherical field rotator, which functions as not only a wave vector rotator but also a polarization rotator, depending on the orientations of the spherical rotator with respect to the incident wave direction. The functionality of these transformation devices are all successfully confirmed by our analytical full-wave method, which also provides an alternate computational efficient validation method in contrast to numerical validation methods.
Abstract:Multiple plasmonic Fano resonances are generally considered to require complex nanostructures, such as multilayer structure, to provide several dark modes that can couple with the bright mode. In this paper, we show the existence of multiple Fano resonances in single layer core-shell nanostructures where the multiple dark modes appear due to the geometrical symmetry breaking induced by axial offset of the core. Both dielectric-core-metal-shell (DCMS) and metal-core-dielectric-shell (MCDS) configurations have been studied. Compared to the MCDS structure, the DCMS configuration provides higher modulation depth. Analytical studies based on transformation optics and numerical simulations have been performed to investigate the role of geometrical and material parameters on the optical properties of the proposed nanostructures. Refractive index sensing with higher-order Fano resonances has also been described, providing opportunity for multiwavelength sensing with high figure of merit.
We design and fabricate a metasurface composed of gold cut-disk resonators that exhibits a strong coherent nonlinear response. We experimentally demonstrate all-optical modulation of both second-and third-harmonic signals on a subpicosecond time scale. Pump−probe experiments and numerical models show that the observed effects are due to the ultrafast response of the electronic excitations in the metal under external illumination. These effects pave the way for the development of novel active nonlinear metasurfaces with controllable and switchable coherent nonlinear response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.