The gut microbiota is found to be strongly associated with atherosclerosis (AS). Resveratrol (RSV) is a natural phytoalexin with anti-AS effects; however, its mechanisms of action remain unclear. Therefore, we sought to determine whether the anti-AS effects of RSV were related to changes in the gut microbiota. We found that RSV attenuated trimethylamine-N-oxide (TMAO)-induced AS in ApoE−/− mice. Meanwhile, RSV decreased TMAO levels by inhibiting commensal microbial trimethylamine (TMA) production via gut microbiota remodeling in mice. Moreover, RSV increased levels of the genera Lactobacillus and Bifidobacterium, which increased the bile salt hydrolase activity, thereby enhancing bile acid (BA) deconjugation and fecal excretion in C57BL/6J and ApoE−/− mice. This was associated with a decrease in ileal BA content, repression of the enterohepatic farnesoid X receptor (FXR)-fibroblast growth factor 15 (FGF15) axis, and increased cholesterol 7a-hydroxylase (CYP7A1) expression and hepatic BA neosynthesis. An FXR antagonist had the same effect on FGF15 and CYP7A1 expression as RSV, while an FXR agonist abolished RSV-induced alterations in FGF15 and CYP7A1 expression. In mice treated with antibiotics, RSV neither decreased TMAO levels nor increased hepatic BA synthesis. Additionally, RSV-induced inhibition of TMAO-caused AS was also markedly abolished by antibiotics. In conclusion, RSV attenuated TMAO-induced AS by decreasing TMAO levels and increasing hepatic BA neosynthesis via gut microbiota remodeling, and the BA neosynthesis was partially mediated through the enterohepatic FXR-FGF15 axis.
Mutations in the no-mechanoreceptor-potential A (nompA) gene, which eliminate transduction in Drosophila mechanosensory organs, disrupt contacts between neuronal sensory endings and cuticular structures. nompA encodes a transmembrane protein with a large, modular extracellular segment that includes a zona pellucida (ZP) domain and several plasminogen N-terminal (PAN) modules. It is specifically expressed in type I sense organs of the peripheral nervous system by the support cells that ensheath the neuronal sensory process. A green fluorescent protein (GFP)-NompA fusion protein is localized to the dendritic cap, an extracellular matrix that covers the ciliary outer segment of the sensory process and that shows organizational defects in nompA mutants. The structure and location of NompA suggest that it forms part of a mechanical linkage required to transmit mechanical stimuli to the transduction apparatus.
Hypercobalaminemia (high serum vitamin B12 levels) is a frequent and underestimated anomaly. Clinically, it can be paradoxically accompanied by signs of deficiency, reflecting a functional deficiency linked to qualitative abnormalities, which are related to defects in tissue uptake and action of vitamin B12. The aetiological profile of high serum cobalamin predominantly encompasses severe disease entities for which early diagnosis is critical for prognosis. These entities are essentially comprised of solid neoplasms, haematological malignancies and liver and kidney diseases. This review reflects the potential importance of the vitamin B12 assay as an early diagnostic marker of these diseases. A codified approach is needed to determine the potential indications of a search for high serum cobalamin and the practical clinical strategy to adopt upon discovery of elevated cobalamin levels. While low serum cobalamin levels do not necessarily imply deficiency, an abnormally high serum cobalamin level forms a warning sign requiring exclusion of a number of serious underlying pathologies. Functional cobalamin deficiency can thus occur at any serum level.
Resveratrol, a natural polyphenolic compound, is abundantly found in plant foods and has been extensively studied for its anti-cancer properties. Given the important role of CSCs (Cancer Stem Cells) in breast tumorigenesis and progression, it is worth investigating the effects of resveratrol on CSCs. The article is an attempt to investigate the effects of resveratrol on breast CSCs. Resveratrol significantly inhibits the proliferation of BCSCs (breast cancer stem-like cells) isolated from MCF-7 and SUM159, and decreased the percentage of BCSCs population, consequently reduced the size and number of mammospheres in non-adherent spherical clusters. Accordingly, the injection of resveratrol (100 mg/kg/d) in NOD/SCID (nonobese diabetic/severe combined immunodeficient) mice effectively inhibited the growth of xenograft tumors and reduced BCSC population in tumor cells. After the reimplantation of primary tumor cells into the secondary mice for 30 d, all 6 control inoculations produced tumors, while tumor cells derived from resveratrol-treated mice only caused 1 tumor of 6 inoculations. Further studies by TEM (Transmission electron microscopy) analysis, GFP-LC3-II puncta formation assay and western blot for LC3-II, Beclin1 and Atg 7, showed that resveratrol induces autophagy in BCSCs. Moreover, resveratrol suppresses Wnt/β-catenin signaling pathway in BCSCs; over-expression of β-catenin by transfecting the plasmid markedly reduced resveratrol-induced cytotoxicity and autophagy in BCSCs. Our findings indicated that resveratrol inhibits BCSCs and induces autophagy via suppressing Wnt/β-catenin signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.