Glutamate dehydrogenase (Gdh), catalyzing the reversible conversion between 2-oxoglutarate and glutamate, plays an important role in the connection of nitrogen and carbon metabolism. Yet little is known about these enzymes in the amino acid-manufacturing Corynebacterium glutamicum. In the present study, we firstly identified the enzymatic characteristics of two Gdhs (GdhA and GdhB). The results showed that both GdhA and GdhB prefers NADPH as a coenzyme and have higher affinity for 2-OG than glutamate. The growth characteristics of gdhAΔ mutant and gdhBΔ mutant, gdhABΔ mutant showed GdhA serves as the main conduit for ammonium assimilation, and GdhB is the main glutamate- metabolizing enzyme in C. glutamicum. The full-genome transcriptomic analysis was used to investigate physiological response of C. glutamicum to the glutamate as nitrogen source, and gdh deletion. The results showed that the nitrogen starvation response was elicited when glutamine served as the sole nitrogen source. gdhAΔBΔ double deletion trigger a partially deregulated nitrogen starvation response, in which genes involved in nitrogen assimilation showed obviously upregulated in a certain extent. On the other hand, the genes of phosphotransferase system (PTS) and glycolysis pathway, most genes in pentose phosphate pathway were significantly upregulated, indicating that gdh deficiency initiated the enhancement of the absorption and metabolism of carbon sources. We believed that our results in this study will give new insights on the molecular mechanism of Gdh activity cross-talks with carbon and nitrogen metabolism, also setting a new background for further flux redistribution applied research of biotechnological interest.
Glutamate dehydrogenase (Gdh), catalyzing the reversible conversion between 2-oxoglutarate and glutamate, plays an important role in the connection of nitrogen and carbon metabolism. Yet little is known about these enzymes in the amino acid-manufacturing Corynebacterium glutamicum. In the present study, we firstly identified the enzymatic characteristics of two Gdhs (GdhA and GdhB). The results showed that both GdhA and GdhB prefers NADPH as a coenzyme and have higher affinity for 2-OG than glutamate. The growth characteristics of gdhAΔ mutant and gdhBΔ mutant, gdhABΔ mutant showed GdhA serves as the main conduit for ammonium assimilation, and GdhB is the main glutamate- metabolizing enzyme in C. glutamicum. The full-genome transcriptomic analysis was used to investigate physiological response of C. glutamicum to the glutamate as nitrogen source, and gdh deletion. The results showed that the nitrogen starvation response was elicited when glutamine served as the sole nitrogen source. gdhAΔBΔ double deletion trigger a partially deregulated nitrogen starvation response, in which genes involved in nitrogen assimilation showed obviously up-regulated in a certain extent. On the other hand, the genes of phosphotransferase system (PTS) and glycolysis pathway, most genes in pentose phosphate pathway were significantly up-regulated, indicating that gdh deficiency initiated the enhancement of the absorption and metabolism of carbon sources. we believed that our results in this study will give new insights on the molecular mechanism of Gdh activity cross-talks with carbon and nitrogen metabolism, also setting a new background for further flux redistribution applied research of biotechnological interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.