The C‐4 salt marsh grass, Spartina patens, thrives in the upper portion of the marsh where soil salinities may be equal to coastal seawater. Spartina patens was grown in hydroponic culture in a greenhouse at 0, 340, and 510 mM NaCl, and measured for growth, tissue cation content, and root plasma membrane (PM) lipid composition. From 0 to 340 and 510 mM, the shoot growth decreased, but root growth was not affected. The Na+ content increased in both shoots and roots when plants were grown in salt, while the shoots had a decreased K+ content and the roots had a decreased Ca2+ content. Spartina patens root plasma membrane was isolated with an aqueous polymer two‐phase system. The purity of the plasma membrane was verified with cytochemical tests on membrane enzyme markers. Plasma membrane lipids were stable relative to the membrane protein content. Molar percentages of sterols (including free sterols) and phospholipid decreased with increasing salinity. However, glycolipid showed a statistically significant increase in the total lipid as salinity in the medium was increased from 0 to 510 mM. Even at a salinity of 510 mM, the plasma membrane sterol/phospholipid ratio was unaffected by NaCl. When the plants were grown in NaCl media, the plasma membrane had a decreased phosphatidylcholine (PC) and phosphatidylethanolamine (PE) content, but the PC/PE ratios were not affected. The plasma membrane molar percentage of sitosterol in total free sterol increased when plants were grown in salt media. The predominant membrane fatty acids were C11 and C14, and the major unsaturated one was C14:1. An increase in growth medium salinity resulted in a decreased root plasma membrane fluidity.
Callus cultures of the salt marsh grass Spartina patens were examined to determine changes and consistencies in membrane lipid composition in response to salt. Major membrane lipid classes remained stable at all salinity levels (0, 170, 340 mmol/L). However, the membrane protein to lipid ratio decreased significantly in response to elevated NaCl. Callus plasma membrane (PM) consisted predominantly of sterols, about 60% (mol%) of the total lipids. Glycolipid was the second largest lipid class, making up about 20% (mol%) of the total. With increasing salinity, the relative percentage of sitosterol decreased, while that of campesterol increased. The phospholipid species detected were phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidylserine (PS), and phosphatidylinositol (PI). When callus was grown at 340 mmol/L NaCl, PC increased significantly. PI and PS were also significantly elevated in salinity treatments. Only 24-32% of the PM fatty acids were common plant membrane fatty acids, C16, C18, C20, and C22, while over 60% were the less common fatty acids, C11 and C14. Membrane fluidity remained stable in response to growth medium salinity. The findings on membrane responses to salinity will facilitate a better understanding of this halophyte's tactics for salt tolerance.
The traditional distillation method for recovery of butanol from fermentation broth is an energy-intensive process. Separation of butanol based on adsorption methodology has advantages in terms of biocompatibility and stability, as well as economy, and therefore gains much attention. However, the application of the commercial adsorbents in the integrated acetone-butanol-ethanol (ABE) fermentation process is restricted due to the low recovery (less than 85%) and the weak capability of enrichment in the eluent (3-4 times). In this study, we investigated the sorption properties of butanol onto three kinds of adsorbents with different polarities developed in our laboratory, that is, XD-41, H-511, and KA-I resin. The sorption behaviors of single component and ABE ternary mixtures presented in the fermentation broths on KA-I resin were investigated. KA-I resin had higher affinity for butanol than for acetone, ethanol, glucose, acetic acid, and butyric acid. Multicomponent ABE sorption on KA-I resin was modeled using a single site extended Langmuir isotherm model. In a desorption study, all the adsorbed components were desorbed in one bed volume of methanol, and the recovery of butanol from KA-I resin was 99.7%. The concentration of butanol in the eluent was increased by a factor of 6.13. In addition, KA-I resin was successfully regenerated by two bed volumes of water. Because of its quick sorption, high sorption capacity, low cost, and ease of desorption and regeneration, KA-I resin exhibits good potential for compatibility with future ABE fermentation coupled with in situ recovery product removal techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.