Working memory (WM) is essential for cognition, but the underlying neural mechanisms remain elusive. From a hierarchical processing perspective, this paper proposed and tested a hypothesis that a domain-general network at the top of the WM hierarchy can interact with distinct domain-preferential intermediate circuits to support WM. Employing a novel N-back task, we first identified the posterior superior temporal gyrus (pSTG), middle temporal area (MT), and postcentral gyrus (PoCG) as intermediate regions for biological motion and shape motion processing, respectively. Using further psychophysiological interaction analyses, we delineated a frontal–parietal network (FPN) as the domain-general network. These results were further verified and extended by a delayed match to sample (DMS) task. Although the WM load-dependent and stimulus-free activations during the DMS delay phase confirm the role of FPN as a domain-general network to maintain information, the stimulus-dependent activations within this network during the DMS encoding phase suggest its involvement in the final stage of the hierarchical processing chains. In contrast, the load-dependent activations of intermediate regions in the N-back task highlight their further roles beyond perception in WM tasks. These results provide empirical evidence for a hierarchical processing model of WM and may have significant implications for WM training.
Working memory (WM) has been a major focus of cognitive science and neuroscience for the past 50 years. While most WM research has centered on the mechanisms of objects, there has been a lack of investigation into the cognitive and neural mechanisms of events, which are the building blocks of our experience. Employing confirmatory factor analysis and resting-state and task fMRI, our study demonstrated for the first time that events have an independent storage space within WM, known as the event cache, with distinct neural correlates compared to object storage in WM. The cerebellar network was found to be the most essential network for event cache, with the left cerebellum Crus I being particularly involved in encoding and maintaining events. Our findings shed critical light on the neuropsychological mechanism of WM by revealing event cache as an independent sub-component of WM and encourage the reconsideration of theoretical models for WM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.