The polarization state of an ultrafast laser is dynamically controlled using two Spatial Light Modulators and additional waveplates. Consequently, four states of polarization, linear horizontal and vertical, radial and azimuthal, all with a ring intensity distribution, were dynamically switched at a frequency ν = 12.5 Hz while synchronized with a motion control system. This technique, demonstrated here for the first time, enables a remarkable level of real-time control of the properties of light waves and applied to real-time surface patterning, shows that highly controlled nanostructuring is possible. Laser ablation of Induced Periodic Surface Structures is used to directly verify the state of polarization at the focal plane.
We report on new developments in wavefront and polarization control for ultrashort-pulse laser microprocessing. We use two Spatial Light Modulators in combination to structure the optical fields of a picosecond-pulse laser beam, producing vortex wavefronts and radial or azimuthal polarization states. We also carry out the first demonstration of multiple first-order beams with vortex wavefronts and radial or azimuthal polarization states, produced using Computer Generated Holograms. The beams produced are used to nano-structure a highly polished metal surface. Laser Induced Periodic Surface Structures are observed and used to directly verify the state of polarization in the focal plane and help to characterize the optical properties of the setup.
Precise tailoring of optical vector beams is demonstrated, shaping their focal electric fields and used to create complex laser micro-patterning on a metal surface. A Spatial Light Modulator (SLM) and a micro-structured S-waveplate were integrated with a picosecond laser system and employed to structure the vector fields into radial and azimuthal polarizations with and without a vortex phase wavefront as well as superposition states. Imprinting Laser Induced Periodic Surface Structures (LIPSS) elucidates the detailed vector fields around the focal region. In addition to clear azimuthal and radial plasmon surface structures, unique, variable logarithmic spiral micro-structures with a pitch Λ ∼1μm, not observed previously, were imprinted on the surface, confirming unambiguously the complex 2D focal electric fields. We show clearly also how the Orbital Angular Momentum(OAM) associated with a helical wavefront induces rotation of vector fields along the optic axis of a focusing lens and confirmed by the observed surface micro-structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.