The FTO protein is unequivocally reported to play a critical role in human obesity and in the regulation of cellular levels of m(6)A modification, which makes FTO a significant and worthy subject of study. Here, we identified that fluorescein derivatives can selectively inhibit FTO demethylation, and the mechanisms behind these activities were elucidated after we determined the X-ray crystal structures of FTO/fluorescein and FTO/5-aminofluorescein. Furthermore, these inhibitors can also be applied to the direct labeling and enrichment of FTO protein combined with photoaffinity labeling assay.
Powerful information processing and ubiquitous computing are crucial for all machines and living organisms. The Watson-Crick base-pairing principle endows DNA with excellent recognition and assembly abilities, which facilitates the design of DNA computers for achieving intelligent systems. However, current DNA computational systems are always constrained by poor integration efficiency, complicated device structures or limited computational functions. Here, we show a DNA arithmetic logic unit (ALU) consisting of elemental DNA logic gates using polymerase-mediated strand displacement. The use of an enzyme resulted in highly efficient logic gates suitable for multiple and cascaded computation. Based on our basic single-rail DNA configuration, additional combined logic gates (e.g., a full adder and a 4:1 multiplexer) have been constructed. Finally, we integrate the gates and assemble the crucial ALU. Our strategy provides a facile strategy for assembling a large-scale complex DNA computer system, highlighting the great potential for programming the molecular behaviors of complicated biosystems.
G-Quadruplex (G4) is a noncanonical nucleic acid secondary structure with multiple biofunctions. Identifying G4-related proteins (G4RPs) is important for understanding the roles of G4 in biology. Current methods to identify G4RPs include discovery from specific biological processes or in vitro pull-down assays with specific G4 sequences. Here, we report an in vivo strategy used to identify G4RPs with extensive sequence tolerance based on G4 ligand-mediated cross-linking. Applying this method, we identified 114 and 281 G4RPs in SV589 and MM231 cells, respectively. The results successfully overlapped with all the pull-down assay literature. Through the electrophoretic mobility shift assay (EMSA), we identified some new G4binding proteins. Moreover, enhanced cross-linking and immunoprecipitation (eCLIP) confirmed that one newly identified G4-binding protein, SERBP1, interacts with G4 in the cellular environment. The method we developed provides a new strategy for identifying proteins that interact with nucleic secondary structures in cells and benefit the study of their biological roles.
The development of RNA aptamers/fluorophores system is highly desirable for understanding the dynamic molecular biology of RNAs in vivo. Peppers-based imaging systems have been reported and applied for mRNA imaging in living cells. However, the need to insert corresponding RNA aptamer sequences into target RNAs and relatively low fluorescence signal limit its application in endogenous mRNA imaging. Herein, we remolded the original Pepper aptamer and developed a tandem array of inert Pepper (iPepper) fluorescence turn-on system. iPepper allows for efficient and selective imaging of diverse endogenous mRNA species in live cells with minimal agitation of the target mRNAs. We believe iPepper would significantly expand the applications of the aptamer/fluorophore system in endogenous mRNA imaging, and it has the potential to become a powerful tool for real-time studies in living cells and biological processing.
A G-quadruplex (G4)
is a four-stranded nucleic acid secondary structure
maintained by Hoogsteen hydrogen bonds established between four guanines.
Experimental studies and bioinformatics predictions support the hypothesis
that these structures are involved in different cellular functions
associated with both DNA and RNA processes. An increasing number of
diseases have been shown to be associated with abnormal G4 regulation.
Here, we describe the existence of G4 and then discuss G4-related
pathogenic mechanisms in neurodegenerative diseases and the viral
life cycle. Furthermore, we focus on the role of G4s in the design
of antiviral therapy and neuropharmacology, including G4 ligands,
G4-based aptamers, G4-related proteins, and CRISPR-based sequence
editing, along with a discussion of limitations and insights into
the prospects of this unusual nucleic acid secondary structure in
therapeutics. Finally, we highlight progress and challenges in this
field and the potential G4-related research fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.