Abstract-In this paper, we propose a generic point cloud encoder that provides a unified framework for compressing different attributes of point samples corresponding to 3D objects with arbitrary topology. In the proposed scheme, the coding process is led by an iterative octree cell subdivision of the object space. At each level of subdivision, positions of point samples are approximated by the geometry centers of all treefront cells while normals and colors are approximated by their statistical average within each of tree-front cells. With this framework, we employ attribute-dependent encoding techniques to exploit different characteristics of various attributes. All of these have led to significant improvement in the rate-distortion (R-D) performance and a computational advantage over the state of the art. Furthermore, given sufficient levels of octree expansion, normal space partitioning and resolution of color quantization, the proposed point cloud encoder can be potentially used for lossless coding of 3D point clouds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.