Solid-state nanopores are powerful tools for reading the three-dimensional shape of molecules, allowing for the translation of molecular structure information into electric signals.Here, we show a high-resolution integrated nanopore system for identifying DNA nanostructures that has the capability of distinguishing attached short DNA hairpins with only a stem length difference of 8 bp along a DNA double strand named the DNA carrier. Using our platform, we can read up to 112 DNA hairpins with a separating distance of 114 bp attached on a DNA carrier that carries digital information. Our encoding strategy allows for the creation of a library of molecules with a size of up to 5 × 10 33 (2 112 ) that is only built from a few hundred types of base molecules for data storage and has the potential to be extended by linking multiple DNA carriers. Our platform provides a nanopore-and DNA nanostructure-based data storage method with convenient access and the potential for miniature-scale integration.
The DNA origami technique can enable functionalization of inorganic structures for single-molecule electric current recordings. Experiments have shown that several layers of DNA molecules—a DNA origami plate— placed on top of a solid-state nanopore is permeable to ions. Here, we report a comprehensive characterization of the ionic conductivity of DNA origami plates by means of all-atom molecular dynamics (MD) simulations and nanocapillary electric current recordings. Using the MD method, we characterize the ionic conductivity of several origami constructs, revealing the local distribution of ions, the distribution of the electrostatic potential and contribution of different molecular species to the current. The simulations determine the dependence of the ionic conductivity on the applied voltage, the number of DNA layers, the nucleotide content and the lattice type of the plates. We demonstrate that increasing the concentration of Mg2+ ions makes the origami plates more compact, reducing their conductivity. The conductance of a DNA origami plate on top of a solid-state nanopore is determined by the two competing effects: bending of the DNA origami plate that reduces the current and separation of the DNA origami layers that increases the current. The latter is produced by the electro-osmotic flow and is reversible at the time scale of a hundred nanoseconds. The conductance of a DNA origami object is found to depend on its orientation, reaching maximum when the electric field aligns with the direction of the DNA helices. Our work demonstrates feasibility of programming the electrical properties of a self-assembled nanoscale object using DNA.
Designed “DNA carriers” have been proposed as a new method for nanopore based specific protein detection. In this system, target protein molecules bind to a long DNA strand at a defined position creating a second level transient current drop against the background DNA translocation. Here, we demonstrate the ability of this system to quantify protein concentrations in the nanomolar range. After incubation with target protein at different concentrations, the fraction of DNA translocations showing a secondary current spike allows for the quantification of the corresponding protein concentration. For our proof-of-principle experiments we use two standard binding systems, biotin–streptavidin and digoxigenin–antidigoxigenin, that allow for measurements of the concentration down to the low nanomolar range. The results demonstrate the potential for a novel quantitative and specific protein detection scheme using the DNA carrier method.
Single nucleotide polymorphisms (SNPs) play a crucial role as molecular markers in medical and diagnostic application. We demonstrate a nanopore based method for SNP detection at the single molecule level. Designed DNA carriers are used to distinguish DNA strands containing only one single base difference and follow strand displacement kinetics.
Solid-state nanopores are promising tools for single-molecule detection of both DNA and proteins. In this study, we investigated the patterns of ionic current blockades as DNA translocates into or out of the geometric confinement of conically shaped pores across a wide range of salt conditions. We studied how the geometry of a nanopore affects the detected ionic current signal of a translocating DNA molecule over a wide range of salt concentration. The blockade level in the ionic current depends on the translocation direction at a high salt concentration, and at lower salt concentrations we find a nonintuitive ionic current decrease and increase within each single event for the DNA translocations exiting from confinement. We use a recently developed method for synthesizing DNA molecules with multiple position markers, which provides further experimental characterization by matching the position of the DNA in the pore with the observed ionic current signal. Finally, we employ finite element calculations to explain the shapes of the signals observed at all salt concentrations and show that the unexpected current decrease and increase are due to the competing effects of ion concentration polarization and geometric exclusion of ions. Our analysis shows that over a wide range of geometries, voltages, and salt concentrations, we are able to understand the ionic current signals of DNA in asymmetric nanopores, enabling signal optimization in molecular sensing applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.