Background: AT-rich interactive domain-containing protein 1A (ARID1A) is a member of the switch/sucrose nonfermentable chromatin remodeling complex, which has been observed to be mutated in various tumors. The loss of ARID1A is reported to be frequently associated with PI3K/Akt pathway activation. Objective: The roles of ARID1A in nasopharyngeal carcinoma (NPC) have not been reported until now. The aim of this research was to explore the clinical significance and potential mechanism of ARID1A in NPC development and progression. Methods: ARID1A expression levels were investigated in human NPC tissues and cell lines. The effects of ARID1A knockdown on nasopharyngeal cancer cell proliferation, migration and invasion were evaluated in vitro using CCK8, wound healing, transwell and flow cytometry assays. The expression of relevant proteins was evaluated by Western blot assays. Results: In this study, ARID1A was significantly downregulated in NPC tissues and cells. Furthermore, low ARID1A expression was significantly associated with aggressive clinicopathological characteristics and poor survival in NPC patients. Depletion of endogenous ARID1A by siRNA promoted proliferation, migration and invasion in CNE1 and HNE1 cells. Additionally, ARID1A knockdown increased the phosphorylation of Akt in NPC cells. High levels of p-Akt were also observed in NPC biopsies and correlated with ARID1A downregulation. These results imply that the loss of ARID1A could activate Akt signaling. In addition, MK-2206 (a highly selective inhibitor of Akt) partially suppressed NPC cell proliferation, migration and invasion, which were induced by ARID1A knockdown. Conclusion: Our findings indicate that ARID1A plays an essential role in modulating the Akt pathway, functions as a tumor suppressor in NPC and may be a potential target for NPC treatment.
Cisplatin resistance is one of the main obstacles in the treatment of advanced nasopharyngeal carcinoma (NPC). AKR1C1 is a member of the Aldo‐keto reductase superfamily (AKRs), which converts aldehydes and ketones to their corresponding alcohols and has been reported to be involved in chemotherapeutic resistance of multiple drugs. The expression and function of AKR1C1 in NPC have not been reported until now. The aim of this research was to investigate the expression of AKR1C1 and it is role in cisplatin resistance in NPC. AKR1C1 protein expression was detected by immunohistochemistry in human NPC tissues and by Western blot assays in NPC and immortalized nasopharyngeal epithelial cells. The effects of AKR1C1 knock‐down by siRNA on proliferation, migration and invasion in NPC cells were evaluated by CCK8, wound healing and transwell assays. To evaluate the effects of AKR1C1 silencing on cisplatin sensitivity in NPC cells, CCK8 assays were used to detect cell proliferation, flow cytometry was used to detect cell cycle distribution, and flow cytometry and DAPI staining were used to detect cell apoptosis. AKR1C1 down‐regulation was associated with advanced clinicopathological characters such as larger tumor size, more lymphatic nodes involvement, with metastasis and later clinical stages, while AKR1C1 down‐regulation was a good prognostic factor for overall survival (OS) in NPC patients. In vitro study showed that AKR1C1 was not directly involved in the malignant biological behaviours such as proliferation, cell cycle progression and migration of NPC cells, whereas AKR1C1 knock‐down could enhance cisplatin sensitivity of NPC cells. These results suggest that AKR1C1 is a potential marker for predicting cisplatin response and could serve as a molecular target to increase cisplatin sensitivity in NPC.
Background Most Epstein-Barr virus (EBV)-positive cells lose the EBV episomes upon prolonged propagation. Purpose The purposes of this study were to establish a simple cell model for nasopharyngeal carcinoma (NPC) research by introducing a plasmid with the EBV genome into NPC cells and then to investigate the resulting changes in malignant biological behaviour and NPC-associated signalling pathways. Methods HONE1 NPC cells were transfected with F-factor plasmids including the EBV genome (HONE1-EBV cells). Then cell proliferation, migration, cell cycle distribution and apoptosis were evaluated in vitro by using CCK8, transwell and flow cytometry assays respectively. EBV-encoded proteins and cell signal tranducting proteins were detected by western blot assays. EBV-encoded RNAs were detected by in situ hybridization. EBV particles were assayed by transmission electron microscope (TEM). The morphology of cells were detected by immunofluorescence assays for alpha-tubulin. Results Latent membrane protein 1 (LMP1), latent membrane protein 2A (LMP2A), Epstein-Barr nuclear antigen 1 (EBNA1) and EBV-encoded small RNAs (EBERs) were successfully expressed in HONE1-EBV cells. No EBV particles were founded by TEM. Introduction of the EBV genome significantly promoted proliferation, cell cycle progression and migration and inhibited apoptosis in HONE1 cells. Immunofluorescence assays showed that the morphology of HONE1-EBV cells changed into spindle. Furthermore, EBV genome introduction significantly inhibited the JAK/STAT signalling pathway, while it activated the PI3K-AKT and NF-κB signalling pathways in HONE1 cells. Conclusion These findings suggest that F-factor plasmid-mediated EBV genome introduction was successful in constructing an EBV positive cell model, which showed deteriorated biological behavior and activated NPC-associated signalling pathways. This model can serve as a good tool for studying EBV in NPC, but the subtle differences in cancer-associated pathways must be considered.
This article is available in open access under Creative Common Attribution-Non-Commercial-No Derivatives 4.0 International (CC BY-NC-ND 4.0) license, allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially selective toxicity of STZ contributes to the pathogenesis of diabetes mellitus. In this research, a simple model of STZ-induced T2DM was constructed to study curcumin's anti-diabetic activity. Curcumin, a kind of natural phenol extracted from Curcuma longa plants, possesses a wide range of pharmacological properties, including antioxidant, anti-inflammatory, and anticancer [12, 13].It was reported to counter the tissue injury of alkylating agents with decreased oxidative stress [11]. The ability of curcumin to suppress oxidative stress may contribute to its anti-diabetic activity.Both GPX and SOD are major antioxidant enzymes in cells. SOD enzymes are indispensable and ubiquitous antioxidant defences maintaining the steady-state levels of O 2 • -[14], while GPXs are important enzymes in the glutathione-ascorbate cycle for catalysing the reduction of H 2 O 2 or organic hydroperoxides to water [15]. However, MDA is one of the final products of lipid peroxidation. An increase in free radicals causes overproduction of MDA. The malondialdehyde level is commonly used as a marker of oxidative stress and the antioxidant status in cancerous patients [16].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.