ABSTRACT:The phosphatidylinositol 3-kinase (PI3K) signaling pathway plays important roles in cell proliferation, growth, and survival. Hyperactivated PI3K is frequently found in a wide variety of human cancers, validating it as a promising target for cancer therapy. We determined the crystal structure of the human PI3Kα−PI103 complex to unravel molecular interactions. Based on the structure, substitution at the R 1 position of the phenol portion of PI103 was demonstrated to improve binding affinity via forming a new H-bond with Lys802 at the bottom of the ATP catalytic site. Interestingly, the crystal structure of the PI3Kα−9d complex revealed that the flexibility of Lys802 can also induce additional space at the catalytic site for further modification. Thus, these crystal structures provide a molecular basis for the strong and specific interactions and demonstrate the important role of Lys802 in the design of novel PI3Kα inhibitors. KEYWORDS: PI3K, PI103, crystal structure, drug design, cancer therapy T he lipid kinase family of phosphatidylinositol 3-kinases (PI3Ks) plays pivotal roles in many cellular processes, including proliferation, survival, differentiation, and metabolism. 1−3 Class I PI3K, the best physiologically, biochemically, and structurally characterized member of the PI3K family, consists of four isoforms, α, β, γ, and δ. Each isoform is a heterodimer that comprises a p110 catalytic subunit and a p85 regulatory subunit. Upon insulin and growth factor stimulation, PI3Ks phosphorylate phosphatidylinositol-3,4-bisphosphate (PIP2) to produce phosphatidylinositol-3,4,5-triphosphate (PIP3). The cellular level of PIP3 is also tightly regulated by phosphatases, such as the phosphatase and tensin homologue (PTEN), which dephosphorylates PIP3 back to PIP2. 4,5 The PI3K pathway is frequently deregulated in a wide range of tumor types as a result of hyperactivation of upstream growth factor signaling, mutation, or loss of PTEN, 6 and oncogenic mutations in PIK3CA, 7 which provides further evidence of the role of PI3K in tumorigenesis. Moreover, accumulating evidence indicates that hyperactivation of PI3Kα is inextricably linked to cancer survival and resistance to existing therapies in a great proportion of human cancers. 8 Therefore, targeting PI3Ks with small-molecular-weight inhibitors provides an attractive opportunity for cancer therapy and for overcoming resistance to current therapies, and thus, significant efforts have recently been made to develop PI3K inhibitors. 9 With multiple ongoing efforts in academic and industrial organizations to develop clinically relevant inhibitors against PI3K, a number of inhibitors have already entered clinical trials. 2,10 PI103 is one of the first synthesized PI3K inhibitors; it belongs to the pyridinylfuranopyrimidine class and inhibits PI3K in an ATP-competitive manner with selectivity toward PI3Kα. 11 PI103 has already demonstrated significant antitumor activity against several human tumor xenografts, especially those with well-established abnormalities in the P...
As the prototypical member of the PTP family, protein tyrosine phosphatase 1B (PTP1B) is an attractive target for therapeutic interventions in type 2 diabetes. The extremely conserved catalytic site of PTP1B renders the design of selective PTP1B inhibitors intractable. Although discovered allosteric inhibitors containing a benzofuran sulfonamide scaffold offer fascinating opportunities to overcome selectivity issues, the allosteric inhibitory mechanism of PTP1B has remained elusive. Here, molecular dynamics (MD) simulations, coupled with a dynamic weighted community analysis, were performed to unveil the potential allosteric signal propagation pathway from the allosteric site to the catalytic site in PTP1B. This result revealed that the allosteric inhibitor compound-3 induces a conformational rearrangement in helix α7, disrupting the triangular interaction among helix α7, helix α3, and loop11. Helix α7 then produces a force, pulling helix α3 outward, and promotes Ser190 to interact with Tyr176. As a result, the deviation of Tyr176 abrogates the hydrophobic interactions with Trp179 and leads to the downward movement of the WPD loop, which forms an H-bond between Asp181 and Glu115. The formation of this H-bond constrains the WPD loop to its open conformation and thus inactivates PTP1B. The discovery of this allosteric mechanism provides an overall view of the regulation of PTP1B, which is an important insight for the design of potent allosteric PTP1B inhibitors.
This cover designed by Jingmiao Zhang and colleagues shows four kinds of agricultural waste particles such as (XS: OS/oilseed rape straw, RS/rice straw, WS/wheat straw and CS/corn stover). The image shows how they were used to reinforce agricultural waste liquefied polyol‐based polyurethane foam (XSPU). RS particles show great promoting ability and OS particles reveal complex influence, while WS and CS particles display mild effect on the foaming process. With 1% of OS, 6% of RS, 3% of WS or 1% of CS incorporating in matrix materials, the reinforced foams display applicable density, better physical and mechanical property, more uniform cellular structure, higher thermal stability and more excellent water absorption ability. Doi: https://doi.org/10.1002/app.50583
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.