Forged signature threatens the authenticity of personal identity. Here, an effective SERS anti-counterfeiting system is designed for personal signatures. Mixed ligands improve the complexity of Raman spectra and expand the coding capacity. Fourteen distinct combinations are created from mere five ligands, and great expansion is possible with modest expansion of the ligand library. On the other hand, the (Au-aggregate)@Ag@PSPAA nanostructure significantly increases the surface-enhanced Raman scattering (SERS) intensity and stability so that excellent performance is achieved in SERS detection. By integrating these strategies, SERS inks are produced and applied in signature anti-counterfeiting. The resulting spectra are converted to barcodes that are readily detected through a smart phone APP. With these improvements, this work brings SERS one step closer toward practical applications in signature anti-counterfeiting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.