The micro reacting pipe with 3D internal structure, which is a micromixer with the shape of the pipe, has shown great advantages regarding mass transfer and heat transfer. Since the fluid flow is mostly laminar at the micro-scale, which is unfavorable to the diffusion of reactants, it is important to understand the influence of the geometry of the microchannel on the fluid flow for improving the diffusion of the reactants and mixing efficiency. On the other hand, it is a convenient method to manufacture a micro reacting pipe in one piece through metal additive manufacturing without many post-processing processes. In this paper, a basis for the design of a micromixer model was provided by combining the metal additive manufacturing process constraints with computational fluid dynamics (CFD) simulation. The effects of microchannel structures on fluid flow and mixing efficiency were studied by CFD simulation whose results showed that the internal micro-structure had a significantly positive effect on the mixing efficiency. Based on the simulation results, the splitting-collision mechanism was discussed, and several design rules were obtained. Two different materials were selected for manufacturing with the laser powder bed fusion (L-PBF) technology. After applying pressure tests to evaluate the quality of the formed parts and comparing the corrosion-resistance of the two materials, one material was picked out for the industrial application. Additionally, the chemical experiment was conducted to evaluate the accuracy of the simulation. The experimental results showed that the mixing efficiency of the micro reacting pipe increased by 56.6%, and the optimal determining size of the micro reacting pipe was 0.2 mm. The study can be widely used in the design and manufacture of a micromixer, which can improve efficiency and reacting stability in this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.