Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2) is an autosomal recessive disorder characterized by an almost complete loss of adipose tissue, insulin resistance and fatty liver. Here, we create the first murine model of BSCL2 by targeted disruption of seipin, the causative gene for BSCL2. Compared with their wild-type littermates, the seipin(-/-) mice are viable and of normal weight but display significantly reduced adipose tissue mass, hepatic steatosis, glucose intolerance and hyperinsulinemia. The levels of leptin and adiponectin were both significantly decreased in seipin(-/-) mice, so were non-esterified fatty acids upon fasting. Surprisingly, however, hypertriglyceridemia which is common in human BSCL, was not observed in seipin(-/-) mice. Our findings suggest a possible tissue-autonomous role of seipin in liver lipid storage. The availability of the seipin(-/-) mice should help elucidate the molecular function of seipin and lead to a better understanding of the many metabolic consequences of human BSCL2.
Background: Dysregulation of endoplasmic reticulum homeostasis elicits various stress responses. Results: Endoplasmic reticulum stress activates lipolytic cascade in rat adipocytes.
Conclusion:The lipolysis response to endoplasmic reticulum stress is mediated via cAMP/PKA and ERK1/2 signaling. Significance: Increased lipolysis promotes fatty acid efflux from adipocytes to other tissues and thus may contribute to lipotoxicity and insulin resistance in obesity and diabetes.
Elevated plasma levels of free fatty acids (FFAs) are thought to restrict glucose utilization and induce insulin resistance. Plasma FFA concentrations are primarily governed by lipolysis in adipocytes. Perilipin surrounds the lipid droplet in adipocytes and has a dual role in lipolysis regulation. Perilipin null mice studied by two independent laboratories exhibited similar phenotypes of reduced adipose mass and resistance to diet-induced obesity, but have inconsistent metabolic parameters such as plasma levels of FFA, glucose, and insulin. This discrepancy may be due to differences in genetic background, generation, and nutritional status of the animals examined. In this study, we examined the major metabolic parameters in 129/SvEv perilipin null mice fasted for 4 h and observed increased plasma concentrations of FFA, glycerol, glucose, and insulin. An increase in the score for the homeostasis model assessment of insulin resistance index confirmed the insulin resistance in perilipin null mice, which may be attributed to the plasma FFA elevation. Basal lipolysis was increased in adipose tissues or primary adipocytes isolated from perilipin null mice with increased mass and activity of hormone-sensitive lipase and adipose triglyceride lipase. The increased lipolytic action may accelerate FFA efflux from the adipose tissues to the bloodstream, thereby accounting for systemic FFA elevation and, hence, insulin resistance in perilipin null mice.
Perilipin 1 (Plin1) localizes at the surface of lipid droplets to regulate triglyceride storage and hydrolysis in adipocytes. Plin1 defect leads to low adiposity in mice and partial lipodystrophy in human. This study investigated the roles of Plin1 in adipocyte differentiation. Plin1 null (-/-) mice showed plenty of multilocular adipocytes and small unilocular adipocytes in adipose tissue, along with lack of a subpopulation of adipose progenitor cells capable of in vivo adipogenesis and along with downregulation of adipogenic pathway. Before initiation of differentiation, adipose stromal-vascular cells (SVCs) from Plin1-/- mice already accumulated numerous tiny lipid droplets, which increased in number and size during the first 12-h induction but thereafter became disappeared at day 1 of differentiation. The adipogenic signaling was dysregulated despite protein level of PPARγ was near normal in Plin1-/- SVCs like in Plin1-/- adipose tissue. Heterozygous Plin1+/- SVCs were able to develop lipid droplets, with both the number and size more than in Plin1-/- SVCs but less than in Plin1+/+ SVCs, indicating that Plin1 haploinsufficiency accounts for attenuated adipogenesis. Aberrant lipid droplet growth and differentiation of Plin1-/- SVCs were rescued by adenoviral Plin1 expression and were ameliorated by enhanced or prolonged adipogenic stimulation. Our finding suggests that Plin1 plays an important role in adipocyte differentiation and provides an insight into the pathology of partial lipodystrophy in patients with Plin1 mutation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.