Purpose: MET signaling has been suggested a potential role in hepatocellular carcinoma (HCC) and associated with prometastasis during antiangiogenesis therapy. We investigated the potential association between MET expression and therapeutic response to sorafenib in patients with HCC. Antitumor effects of cabozantinib, a dual inhibitor of MET and VEGFR2, were examined in cultured HCC cells as well as in vivo models.Experimental Design: Total MET and phosphorylated MET (p-MET) were measured in 29 resected HCC specimens, and correlated with response to sorafenib as postoperative adjuvant therapy. In the second set of experiments using cultured HCC cells, and mouse xenograft and metastatic models, effects of cabozantinib were examined.Results: High level of p-MET in resected HCC specimens was associated with resistance to adjuvant sorafenib therapy. In cultured HCC cells that expressed p-MET, cabozantinib inhibited the activity of MET and its downstream effectors, leading to G 1 -phase arrest. Cabozantinib inhibited tumor growth in p-METpositive and p-MET-negative HCC by decreasing angiogenesis, inhibiting proliferation, and promoting apoptosis, but it exhibited more profound efficacy in p-MET-positive HCC xenografts. Cabozantinib blocked the hepatocyte growth factor (HGF)-stimulated MET pathway and inhibited the migration and invasion of the HCC cells. Notably, cabozantinib reduced the number of metastatic lesions in the lung and liver in the experimental metastatic mouse model.Conclusions: Patients with HCC with high level of p-MET are associated with resistance to adjuvant sorafenib treatment. The dual blockade of VEGFR2 and MET by cabozantinib has significant antitumor activities in HCC, and the activation of MET in HCC may be a promising efficacy-predicting biomarker.
BackgroundNumerous studies have shown that long non-coding RNAs (lncRNAs) play key roles during multiple cancer processes, such as cell proliferation, apoptosis, migration and invasion. The previous studies found that NKILA interacted with and suppressed the nuclear translocation of NF-KappaB, which influenced metastasis and prognosis in breast cancer. However the clinical significance and biological role of NKILA in non-small cell lung cancer (NSCLC) remains unknown.MethodsWe examined expression levels of NKILA in 106 pairs of NSCLC tissues and cell lines. The expression level of NKILA after TGF-β1 stimulation also was examined by qRT-PCR and validated by Chromatin immunoprecipitation (ChIP). Gain-of-function and loss-of-function assays were performed to examine the effect of NKILA on proliferation, migration and invasion of NSCLC cells. RNA immunoprecipitation (RIP), western blot and rescue experiments were carried out to reveal the interrelation between NKILA, NF-κB and EMT signal pathway.ResultsThe expression of NKILA was down-regulated in NSCLC cancer tissues compared with matched adjacent noncancerous tissues, and lower NKILA expression in tumor tissues were significantly correlated with lymph node metastasis and advanced TNM stage. We found that the expression of NKILA was mainly regulated by classical TGF-β signal pathway in NSCLC cells rather than NF-κB pathway reported in breast cancer. Gain and loss of function assays found that NKILA inhibited migration, invasion and viability of NSCLC cells. Mechanistic study showed that NKILA attenuated Snail expression via inhibiting the phosphorylation of IκBα and NF-κB activation, subsequently suppressed the expression of markers of epithelial-mesenchymal transition process.ConclusionsThe present study found that the expression of NKILA was downregulated in tumor tissues of NSCLC, which improved the metastasis of NSCLC patients. In vitro studies further clarified that the expression of NKILA was regulated through classical TGF-β signal pathway, which subsequently inhibited migration and invasion of NSCLC cells through interfering NF-κB/Snail signal pathway in NSCLC cells.Electronic supplementary materialThe online version of this article (doi:10.1186/s13046-017-0518-0) contains supplementary material, which is available to authorized users.
Overcoming platinum drug resistance represents a major clinical challenge in cancer treatment. We discovered a novel drug combination using cisplatin and a class of thioquinazolinone derivatives including mdivi-1 (mitochondrial division inhibitor-1), that induces synergistic apoptosis in platinum resistant tumor cells, including those from cisplatin-refractory endstage ovarian cancer patients. However, through study of the combination effect on Drp1 (the reported target of mdivi-1) knockout MEF cells and the functional analysis of mdivi-1 analogs, we revealed that the synergism between mdivi-1 and cisplatin is Drp1-independent. Mdivi-1 impairs DNA replication and its combination with cisplatin induces a synergistic increase of replication stress and DNA damage, causing a preferential upregulation of a BH3-only protein Noxa. Mdivi-1 also represses mitochondrial respiration independent of Drp1, and the combination of mdivi-1 and cisplatin triggers substantial mitochondrial uncoupling and swelling. Upregulation of Noxa and simultaneous mitochondrial swelling causes synergistic induction of mitochondrial outer membrane permeabilization (MOMP), proceeding robust mitochondrial apoptotic signaling independent of Bax/Bak. Thus, the novel mode of MOMP induction by the combination through the “dual-targeting” potential of mdivi-1 on DNA replication and mitochondrial respiration suggests a novel class of compounds for platinum-based combination option in the treatment of platinum as well as multidrug resistant tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.