Ubiquitination is a posttranslational modification of proteins that significantly affects protein stability and function. The specificity of substrate recognition is determined by ubiquitin E3 ligase during ubiquitination. Human Deltex (DTX) protein family, which functions as ubiquitin E3 ligases, comprises five members, namely, DTX1, DTX2, DTX3, DTX3L, and DTX4. The characteristics and functional diversity of the DTX family proteins have attracted significant attention over the last decade. DTX proteins have several physiological and pathological roles and are closely associated with cell signal transduction, growth, differentiation, and apoptosis, as well as the occurrence and development of various tumors. Although they have been extensively studied in various species, data on structural features, biological functions, and potential mechanisms of action of the DTX family proteins remain limited. In this review, recent research progress on each member of the DTX family is summarized, providing insights into future research directions and potential strategies in disease diagnosis and therapy.
Hyper-Hcy and low serum folate levels were associated with an increased risk of AMVT. The homozygous (TT) genotype of MTHFR gene mutation may be a crucial hereditary risk factor in the development of AMVT for a Chinese population.
Circular RNAs (circRNAs) are a group of regulators that affect the aggressive behaviors of several types of cancer. Hsa_circ_0001666 (also referred to as hsa_circ_000742) is a newly discovered circRNA that is upregulated in human papillary thyroid carcinoma (PTC) based on microarray analysis. However, the role of hsa_circ_0001666 in PTC progression remains unknown. Thus, the aim of the present study was to determine the potential function and underlying mechanism of hsa_circ_0001666 in PTC. The results demonstrated that hsa_circ_0001666 was upregulated in both PTC clinical samples and cell lines. Its expression was associated with lymph node metastasis of patients with PTC. Knocking down hsa_circ_0001666 expression inhibited cell proliferation, as evidenced by decreased cell viability, arrest of cell cycle progression at the G 1 phase and an increase in cell cycle-associated proteins. Apoptosis rates and expression levels of pro-apoptotic proteins were also increased by silencing hsa_circ_0001666. In xenograft experiments, the oncogenic effect of hsa_circ_0001666 on tumor growth was verified. Additionally, luciferase reporter assays showed that hsa_circ_0001666 and ETS variant transcription factor 4 (ETV4) shared common binding sites with three microRNAs [(miRNA/miR)-330-5p, miR-193a-5p and miR-326]. Knockdown of these miRNAs separately reversed the inhibitory effect of hsa_circ_0001666 small interfering RNAs on PTC tumor aggressiveness, and ETV4 overexpression also induced a similar effect to that of miRNA inhibitors. Thus, hsa_circ_0001666 may function as an oncogene, promoting PTC tumorigenesis via the miR-330-5p/miR-193a-5p/miR-326/ETV4 pathway. This provides a basis for identifying potential novel therapeutic targets for PTC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.