Organic field-effect transistors (OFETs) are attractive for next-generation electronics, while doping plays an important role in their performance optimization. In this work, a soluble molecular dopant with high electron affinity, CN6-CP, is investigated to manipulate the performance of OFETs with a p-type organic semiconductor as the transport layer. The performance of the model 2,7-didodecyl[1]benzothieno[3,2-b][1]benzothiophene (C12-BTBT) bottom-gate top-contact (BGTC) OFETs is greatly optimized upon doping by CN6-CP, and the field-effect mobility is improved from 5.5 to 11.1 cm 2 V −1 s −1 , with a widely tunable threshold voltage from −40 to +5 V. Improvements in performance also appear in CN6-CP doped BGBC OFETs. As compared with commonly used molecular dopant F4-TCNQ, CN6-CP exhibits excellent doping effects and great potential for organic electronic applications.
Photoresponsive polymer gels have attracted increasing interest owing to their potential applications in healable materials, drug release systems, and extracellular matrices. Because polymer gels provide suitable environments for photochemical reactions, their properties and functions can be controlled with light with a high spatiotemporal resolution. Herein, the design of photoresponsive polymer gels based on different types of photochemical reactions is introduced. The mechanism and applications of irreversible photoreactions, such as photoinduced free‐radical polymerization, photoinduced click reactions, and photolysis, as well as reversible photoreactions such as photoinduced reversible cycloadditions, reversible photosubstitution of metal complexes, and photoinduced metathesis are reviewed. The remaining challenges of photoresponsive polymer gels are also discussed.
The preparation of micron- to nanometer-sized functional materials with well-defined shapes and packing is a key process to their applications. There are many ways to control the crystal growth of organic semiconductors. Adding polymer additives has been proven a robust strategy to optimize semiconductor crystal structure and the corresponding optoelectronic properties. We have found that poly(3-hexylthiophene) (P3HT) can effectively regulate the crystallization behavior of N,N′-dioctyl perylene diimide (C8PDI). In this study, we combined P3HT and polyethylene glycol (PEG) to amphiphilic block copolymers and studied the crystallization modification effect of these block copolymers. It is found that the crystallization modification effect of the block copolymers is retained and gradually enhanced with P3HT content. The length of C8PDI crystals were well controlled from 2 to 0.4 μm, and the width from 210 to 35 nm. On the other hand, due to the water solubility of PEG block, crystalline PEG-b-P3HT/C8PDI micelles in water were successfully prepared, and this water phase colloid could be stable for more than 2 weeks, which provides a new way to prepare pollution-free aqueous organic semiconductor inks for printing electronic devices.
Self-assembly, which occurs through noncovalent interactions among molecules, is a ubiquitous phenomenon in the natural world. Light is a particularly attractive stimulus for manipulating self-assembled structures due to its precise and noninvasive nature. Photoresponsive ruthenium (Ru) complexes are emerging as promising candidates for controlling self-assembly due to their unique coordination chemistry and reversible light-triggered behavior. Specifically, Ru complexes can undergo photodissociation of their ligands in aqueous solutions, leading to the formation of Ru-H2O species, and this process can be used to control the disassembly of assembled structures upon illumination. Conversely, upon cessation of the light stimulus, some Ru–ligand coordination bonds can be restored, resulting in reassembly of the structures. Herein, we mainly introduce our recent progress in the use of Ru(Ⅱ) complexes to create photocontrolled self-assemblies with applications ranging from cancer therapy to the manipulation of the morphology and properties of nanoscale materials. Finally, we discuss the challenges and future directions of photocontrolled assemblies with Ru complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.