The structure-activity relations in the alumina-supported cobalt catalysts are studied at the realistic conditions of Fischer-Tropsch synthesis using in situ time-resolved XRD and catalytic measurements. Cobalt sintering during the first 3-5 h of the reaction and cobalt carbidisation at a longer time on stream (>8 h) coincide with catalyst deactivation.
A three-step sintering mechanism is proposed for Co-based
catalysts
under Fischer–Tropsch reaction conditions. This mechanism includes
an intermediate formation of oxide layer on cobalt metal nanoparticles
in the presence of water. The partially reversibly oxidized surface
accelerates sintering by both reducing the surface energy and enhancing
the diffusion rates of cobalt particles. The proposed mechanism is
then employed for a fixed-bed unsteady state reactor. The effect of
particle growth on the catalytic activity was analyzed within a diverse
range of operating conditions (syngas ratio = 1.5–4, water
co-feed ratio = 0–6, inert co-feed ratio = 0–6). It
is found that, at the same gas space velocity, sintering proceeds
faster at higher H2/CO ratios. At the same initial conversion,
a low H2/CO syngas ratio increases sintering severity,
i.e., catalyst deactivation due to the crystallite growth, as it brings
about higher relative water partial pressure. Dilution of syngas with
different amounts of inert gas does not affect the cobalt sintering
rate. Cobalt sintering proceeds more rapidly if water is co-fed during
the reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.