The application of ketoreductase-based biocatalytic reduction to access optically pure Prelog or anti-Prelog alcohols offers a valuable approach for asymmetric synthesis. Despite this, control of the stereopreferences of ketoreductases as desired remains challenging, since natural ketoreductases usually display Prelog preference and it is difficult to transfer the knowledge from engineered anti-Prelog ketoreductases to the others. Here, we present the discovery of a switch between Prelog and anti-Prelog reduction toward halogen-substituted acetophenones in six short-chain dehydrogenase/reductases (SDRs). Through carefully analysis of the structural information and multiple-sequence alignment of several reported SDRs with Prelog or anti-Prelog stereopreference, the key residues that might control their stereopreferences were identified using Lactobacillus fermentum short-chain dehydrogenase/reductase 1 (LfSDR1) as the starting enzyme. Protein engineering at these positions of LfSDR1 could improve its anti-Prelog stereoselectivity or switch its stereopreference to Prelog. Moreover, the knowledge obtained from LfSDR1 could be further transferred to the five other SDRs (four mined SDRs and one reported SDR) that have 21−48% sequence identities with LfSDR1. The stereopreferences of these SDRs were able to be switched either from anti-Prelog to Prelog or from Prelog to anti-Prelog by mutagenesis at related positions. In addition, further optimization of LfSDR1 can access stereocomplementary reduction of several halogen-substituted acetophenones with high stereoselectivity (up to >99%), resulting in some valuable chiral alcohols for the synthesis of pharmaceutical agents.
A novel synthetic route for preparing rasagiline mesylate is presented using a dynamic kinetic resolution (DKR) as the key step, catalyzed by Candida antarctica lipase B (CALB) and a Pd nanocatalyst. The chiral intermediate (R)-2,3-dihydro-1indanamine was obtained through the DKR of the racemic aminoindan rac-1 in high yield (>90%) and excellent enantioselectivity (>99% ee). The process could be conducted on a 73 g scale at 200 g/L. Rasagiline mesylate was synthesized in 25% overall yield and excellent enantioselectivity (99.9% ee) over 7 steps.
Chiral carveol and dihydrocarveol are important additives in the flavor industry and building blocks in the synthesis of natural products. Despite the remarkable progress in asymmetric catalysis, convenient access to all possible stereoisomers of carveol and dihydrocarveol remains a challenge. Here, we present the stereodivergent synthesis of carveol and dihydrocarveol through ketoreductases/ene‐reductases catalyzed asymmetric reduction. By directly asymmetric reduction of (R)‐ and (S)‐carvone using ketoreductases, which have Prelog or anti‐Prelog stereopreference, all four possible stereoisomers of carveol with medium to high diastereomeric excesses (up to >99 %) were first observed. Then four stereoisomers of dihydrocarvone were prepared through ene‐reductases catalyzed diastereoselective synthesis. Asymmetric reduction of obtained dihydrocarvone isomers by ketoreductases further provide access to all eight stereoisomeric dihydrocarveol with up to 95 % de values. In addition, the absolute configurations of dihydrocarveol stereoisomers were determined by using modified Mosher's method.
The sesquiterpenoid curdione is one of the main bioactive components in the essential oil of Rhizoma Curcumae (Curcuma wenyujin, Curcuma phaeocaulis, and Curcuma kwangsiensis), which has been clinically used for the treatment of cancer in mainland China. Recently it was reported that natural curdione could be hydroxylated by Aspergillus niger and transferred to its corresponding curcumalactones under acidic conditions. Based on this study, the development of a sesquiterpenoid library through the "mirror-image" manipulation of bioactive (non)natural curdione scaffolds by chemical and biological approaches is presented herein. A. niger induced the hydroxylation of two pairs of curdione enantiomers, yielding the corresponding mirror-image hydroxylated curdiones. Simultaneously, the acid-mediated intramolecular "ene" rearrangements of these curdiones and hydroxylated curdione enantiomers yielded the corresponding mirror-image curcumalactones and hydroxylated curcumalactones. Among the 16 pairs of enantiomers obtained in this study, 23 compounds are new sesquiterpenoids. These curdione and curcumalactone derivatives are of particular interest, as they have the potential to be used as lead compounds and scaffolds in drug discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.