The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor involved in the regulation of multiple cellular pathways, such as xenobiotic metabolism and Th17 cell differentiation. Identification of key physiologically relevant ligand(s) that regulate AHR function remains to be accomplished. Screening of indole metabolites has identified indoxyl-3-sulfate (I3S) as a potent endogenous ligand that selectively activates the human AHR at nanomolar concentrations in primary human hepatocytes, regulating transcription of multiple genes, including: CYP1A1, CYP1A2, CYP1B1, UGT1A1, UGT1A6, IL6, and SAA1. Furthermore, I3S exhibits an ~ 500-fold greater potency in terms of transcriptional activation of the human AHR relative to the mouse AHR in cell lines. Structure-function studies reveal that the sulfate group is important determinant for efficient AHR activation. This is the first phase II enzymatic product identified that can significantly activate the AHR and ligand competition binding assays indicate that I3S is a direct AHR ligand. I3S failed to activate either CAR or PXR. The physiological importance of I3S lies in the fact that it is a key uremic toxin that accumulates to high micromolar concentrations in kidney dialysis patients, but its mechanism of action is unknown. I3S represents the first identified relatively high potency endogenous AHR ligand that plays a key role in human disease progression. These studies provide evidence that the production of I3S can lead to AHR activation and altered drug metabolism. Our results also suggest that prolonged activation of the AHR by I3S may contribute to toxicity observed in kidney dialysis patients and thus represent a possible therapeutic target.The aryl hydrocarbon receptor (AHR) 1 is a ligand-activated transcription factor that belongs to the basic helix-loop-helix/Per-Arnt-Sim (bHLH/PAS) family of transcription factors, a class of proteins that are considered environmental sensors. Prior to activation, the AHR is located in the cytoplasm of the cell, complexed with two heat-shock protein 90 molecules, X-associated
Tobacco smoking is one of the leading causes for oral cancer. Dibenzo[a,l]pyrene (DB[a,l]P), an environmental pollutant and a tobacco smoke constituent, is the most carcinogenic polycyclic aromatic hydrocarbon (PAH) tested to date in several animal models (target organs: skin, lung, ovary and mammary tissues). We have recently demonstrated that DB[a,l]P is also capable of inducing oral cancer in mice; however its metabolic activation to the ultimate genotoxic metabolite dibenzo[a,l]pyrene-11,12-dihydrodiol-13,14-epoxide (DB[a,l]PDE) in mouse oral cavity has not been examined. Here we developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to detect and quantify (±)-anti-DB[a,l]PDE-dA adducts in oral tissues of mice treated with DB[a,l]P. [15N5]-(±)-anti-DB[a,l]PDE-N6-dA adducts were synthesized as internal standards. The stereoisomeric adducts were characterized by MS, NMR and CD analysis. The detection limit of the method is 8 fmol with 100 µg digested DNA as the matrix. Two adducts were detected and identified as (−)-anti-cis and (−)-anti-trans-DB[a,l]PDE-dA in the oral tissues of mice following direct application of DB[a,l]P (240 nmol per day, for 2 days) into the oral cavity, indicating that DB[a,l]P is predominantly metabolized into (−)-anti-DB[a,l]PDE in this target organ. We also compared the formation and removal of adducts as a function of time, following direct application of DB[a,l]P (24 nmol, 3 times per week for 5 weeks) into the oral cavity of mice. Adducts were quantified at 48 h, 1, 2 and 4 weeks after the last dose. Maximal levels of adducts occurred at 48 h, followed by a gradual decrease. The levels (fmol/µg DNA) of (−)-anti-trans adducts (4.03±0.27 to 1.77±0.25) are significantly higher than (−)-anti-cis-DB[a,l]PDE-dA adduct (1.63±0.42 to 0.72±0.04) at each time point (p < 0.005). The results presented here indicate that the formation and persistence of (−)-anti-DB[a,l]PDE-dA adducts may, in part, contribute to the initiation of DB[a,l]P-induced oral carcinogenesis.
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that mediates the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin. However, the role of the AHR in normal physiology is still an area of intense investigation. For example, this receptor plays an important role in certain immune responses. We have previously determined that the AHR can mediate repression of acute-phase genes in the liver. For this observation to be therapeutically useful, selective activation of the AHR would likely be necessary. Recently, the selective estrogen receptor ligand WAY-169916 has also been shown to be a selective AHR ligand. WAY-169916 can efficiently repress cytokine-mediated acute-phase gene expression (e.g. SAA1), yet fail to mediate a dioxin response element-driven increase in transcriptional activity. The goals of this study were to structurally modify WAY-169916 to block binding to the estrogen receptor and increase its affinity for the AHR. A number of WAY-169916 derivatives were synthesized and subjected to characterization as AHR ligands. The substitution of a key hydroxy group for a methoxy group ablates binding to the estrogen receptor and increases its affinity for the AHR. The compound 1-allyl-7-trifluoromethyl-1H-indazol-3-yl]-4-methoxyphenol (SGA 360), in particular, exhibited essentially no AHR agonist activity, yet was able to repress cytokine-mediated SAA1 gene expression in Huh7 cells. SGA 360 was tested in a 12-O-tetradecanoylphorbol-13-acetate (TPA)-mediated ear inflammatory edema model using C57BL6/J and Ahr−/− mice. Our findings indicate that SGA 360 significantly inhibits TPA-mediated ear swelling and induction of a number of inflammatory genes (e.g. Saa3, Cox2, Il6) in C57BL6/J mice. In contrast, SGA 360 had no effect on TPA-mediated ear swelling or inflammatory gene expression in Ahr−/− mice. Collectively, these results indicate that SGA 360 is a selective Ah receptor modulator (SAhRM) that exhibits anti-inflammatory properties in vivo.
We were the first to demonstrate that direct application of the environmental pollutant and tobacco smoke constituent dibenzo[a,l]pyrene (DB[a,l]P) into the oral cavity of mice induced squamous cell carcinoma (SCC) in oral tissues but not in the tongue; however, the mechanisms that can account for the varied carcinogenicity remain to be determined. Furthermore, we also showed that not only dA adducts, but also dG adducts can account for the mutagenic activity of DB[a,l]P in the oral tissues in vivo. In this study, we initially focused on DB[a,l]P-induced genotoxic effects in both oral and tongue tissues. Therefore, to fully assess the contribution of these DNA adducts in the initiation stage of carcinogenesis induced by DB[a,l]P, an LC-MS/MS method to simultaneously detect and quantify DB[a,l]PDE-dG and -dA adducts was developed. Mice were orally administered with DB[a,l]P (24 nmole, 3 times per week for 5 weeks) or its fjord region diol epoxide, (±)-anti-11,12-dihydroxy-13,14-epoxy-11,12,13,14-tetrahydrodibenzo[a,l]pyrene (DB[a,l]PDE, 12 nmole, single application); animals were sacrificed at 2, 7, 14, and 28 days after the last dose of carcinogen administration. Oral and tongue tissues were obtained and DNA were isolated followed by enzymatic hydrolysis. Following the development of an isotope dilution LC-MS/MS method, we successfully detected (−)-anti-cis- and (−)-anti-trans-DB[a,l]PDE-N2-dG, as well as (−)-anti-cis- and (−)-anti-trans-DB[a,l]PDE-N6-dA in oral and tongue tissues of mice treated with DB[a,l]P. Levels of (−)-anti-trans-DB[a,l]PDE-N6-dA were ≥2 folds higher than (−)-anti-cis-DB[a,l]PDE-N6-dA adduct and those of dG adducts in the oral tissues and tongue at all time points selected after the cessation of DB[a,l]P treatment. Levels of dG adducts were comparable in both tissues. Collectively, our results support that DB[a,l]P is predominantly metabolized to (−)-anti-DB[a,l]PDE, and the levels and persistence of (−)-anti-trans-DB[a,l]PDE-N6-dA may, in part, explain the carcinogenicity of DB[a,l]P in the oral tissues but not in the tongue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.