Photoinduced processes, leading to charge-transfer states with extended lifetimes, are of key importance for solar-energy-conversion applications. Utilizing external heavy-atom effect allowed us to photogenerate long-lived transients of electron donor-acceptor dyads. For an electron acceptor and a principal chromophore of the dyads, we selected N-methylacridinium, and for electron donors thiophene, bithiophene, and terthiophene were selected. While the photoinduced charge transfer, mediated by the investigated dyads, occurred in the picosecond time domain, the lifetime of the transients extended to the microsecond time domain. We ascribed the relatively long lifetimes to the triplet character of the observed transients. An increase in the size of the donor lowered the energy of the charge-transfer states of the dyads. When the energy level of the acridinium triplet lies below the energy level of the charge-transfer state, the locally excited triplet accounted for the long-lived transient. For the conjugates with charge-transfer states lying below all other excited states, the long-lived transients were, indeed, the charge-transfer species.
The photophysical properties of a series of 9-arylacridinium conjugates in solid glass matrices composed of sucrose octaacetate have been determined. The fluorescence of the charge-shift states is significantly enhanced because of the retardation of nonradiative pathways for back-electron transfer. Changes of more than 3 orders of magnitude in back-electron-transfer rates (sucrose octaacetate glass vs conventional solvents at room temperature) were observed. Transient spectra displayed long-lived charge-shift species in the microsecond time regime for thianthrene acridinium conjugates. The rate retardation is associated with slow solvation times for surrounding solvent layers in the solid matrix. The red-edge effect (excitation wavelength-dependent fluorescence) for the arylacridinium ions in solid glass confirms the microheterogeneity of the sucrose octaacetate medium.
Bacterial endospores are some of the most resilient forms of life known to us, with their persistent survival capability resulting from a complex and effective structural organization. The outer membrane of endospores is surrounded by the densely packed endospore coat and exosporium, containing amyloid or amyloid-like proteins. In fact, it is the impenetrable composition of the endospore coat and the exosporium that makes staining methodologies for endospore detection complex and challenging. Therefore, a plausible strategy for facile and expedient staining would be to target components of the protective surface layers of the endospores. Instead of targeting endogenous markers encapsulated in the spores, here we demonstrated staining of these dormant life entities that targets the amyloid domains, i.e., the very surface components that make the coats of these species impenetrable. Using an amyloid staining dye, thioflavin T (ThT), we examined this strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.