Cyanobacteriochromes are phytochrome homologues in cyanobacteria that act as sensory photoreceptors. We compare two cyanobacteriochromes, RGS (coded by slr1393) from Synechocystis sp. PCC 6803 and AphC (coded by all2699) from Nostoc sp. PCC 7120. Both contain three GAF (cGMP phosphodiesterase, adenylyl cyclase and FhlA protein) domains (GAF1, GAF2 and GAF3). The respective full-length, truncated and cysteine point-mutated genes were expressed in Escherichia coli together with genes for chromophore biosynthesis. The resulting chromoproteins were analyzed by UV-visible absorption, fluorescence and circular dichroism spectroscopy as well as by mass spectrometry. RGS shows a red-green photochromism (k max = 650 and 535 nm) that is assigned to the reversible 15Z ⁄ E isomerization of a single phycocyanobilin-chromophore (PCB) binding to Cys528 of GAF3. Of the three GAF domains, only GAF3 binds a chromophore and the binding is autocatalytic. RGS autophosphorylates in vitro; this reaction is photoregulated: the 535 nm state containing E-PCB was more active than the 650 nm state containing Z-PCB. AphC from Nostoc could be chromophorylated at two GAF domains, namely GAF1 and GAF3. PCB-GAF1 is photochromic, with the proposed 15E state (k max = 685 nm) reverting slowly thermally to the thermostable 15Z state (k max = 635 nm). PCB-GAF3 showed a novel red-orange photochromism; the unstable state (putative 15E, k max = 595 nm) reverts very rapidly (s 20 s) back to the thermostable Z state (k max = 645 nm). The photochemistry of doubly chromophorylated AphC is accordingly complex, as is the autophosphorylation: E-GAF1 ⁄ E-GAF3 shows the highest rate of autophosphorylation activity, while E-GAF1 ⁄ Z-GAF3 has intermediate activity, and Z-GAF1 ⁄ Z-GAF3 is the least active state. Structured digital abstractl AphC phosphorylates AphC by protein kinase assay (View interaction) l RGS phosphorylates RGS by protein kinase assay (View interaction) Abbreviations AphC, protein encoded by aphC = all2699; CBR, cyanobacteriochrome; GAF, cGMP phosphodiesterase, adenylyl cyclase and FhlA protein domain (SMART acc. no. SM00065); KPB, potassium phosphate buffer; Nostoc, Anabaena (Nostoc) sp. PCC 7120; P XXX ⁄ P YYY , the two photoconvertible states of CBR or Phy designated by the absorption maxima, with the stable generally 15Z state (k max = XXX nm) preceding the light-activated generally 15E-configured state (k max = YYY nm); PAS, period circadian protein, Ah receptor nuclear translocator protein and single-minded protein domain (SMART acc. no. SM00091); PCB, phycocyanobilin; Phy, phytochrome; PVB, phycoviolobilin; PFB, phytochromobilin; RGS, red-green switchable protein encoded by rgs = slr1393; Synechocystis, Synechocystis sp. PCC 6803.
The nuclear factor-B (NF-B) signaling pathway has been targeted for therapeutic applications in a variety of human diseases, includuing cancer. Many naturally occurring substances, including curcumin, have been investigated for their actions on the NF-B pathway because of their significant therapeutic potential and safety profile. A synthetic monoketone compound termed 3,5-bis(2-flurobenzylidene)piperidin-4-one (EF24) was developed from curcumin and exhibited potent anticancer activity. Here, we report a mechanism by which EF24 potently suppresses the NF-B signaling pathway through direct action on IB kinase (IKK). We demonstrate that 1) EF24 induces death of lung, breast, ovarian, and cervical cancer cells, with a potency about 10 times higher than that of curcumin; 2) EF24 rapidly blocks the nuclear translocation of NF-B, with an IC 50 value of 1.3 M compared with curcumin, with an IC 50 value of 13 M; 3) EF24 effectively inhibits tumor necrosis factor (TNF)-␣-induced IB phosphorylation and degradation, suggesting a role of this compound in targeting IKK; and 4) EF24 indeed directly inhibits the catalytic activity of IKK in an in vitro-reconstituted system. Our study identifies IKK as an effective target for EF24 and provides a molecular explanation for a superior activity of EF24 over curcumin. The effective inhibition of TNF-␣-induced NF-B signaling by EF24 extends the therapeutic application of EF24 to other NF-B-dependent diseases, including inflammatory diseases such as rheumatoid arthritis.Curcumin, isolated from the rhizomes of the plant Curcuma longa L., is the major component of the spice curry.
J. Neurochem. (2012) 120, 37–45. Abstract Mutations in leucine‐rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson’s disease. An amino terminal cluster of constitutively phosphorylated residues, serines 860, 910, 935, 955, and 973, appears to be biologically relevant. Phosphorylation of serines 910 and 935 is regulated in response to LRRK2 kinase activity and is responsible for interaction with 14‐3‐3 and maintaining LRRK2 in a non‐aggregated state. We examined the phosphorylation status of two other constitutive phosphorylation sites, serines 955 and 973. Treatment of LRRK2 expressing cells with the selective LRRK2 inhibitor LRRK2‐IN1 revealed that, like Ser910/Ser935, phosphorylation of Ser955 and Ser973 is disrupted by acute inhibition of LRRK2 kinase activity. Additionally, phosphorylation of Ser955 and 973 is disrupted in the context of several Parkinson’s disease associated mutations [R1441G/C, Y1699C, and I2020T]. We observed that modification of Ser973 is dependent on the modification of Ser910/Ser935. Ser955Ala and Ser973Ala mutations do not induce relocalization of LRRK2; however, all phosphomutants exhibited similar localization patterns when exposed to LRRK2‐IN1. We conclude that the mechanisms of regulation of Ser910/935/955/973 phosphorylation are similar and physiologically relevant. These sites can be utilized as biomarkers for LRRK2 activity as well as starting points for the elucidation of upstream and downstream enzymes that regulate LRRK2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.