Identifying fake news on the media has been an important issue. This is especially true considering the wide spread of rumors on the popular social networks such as Twitter. Various kinds of techniques have been proposed to detect rumors. In this work, we study the application of graph neural networks for the task of rumor detection, and present a simplified new architecture to classify rumors. Numerical experiments show that the proposed simple network has comparable to or even better performance than state-of-the art graph convolutional networks, while having significantly reduced the computational complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.