Identifying fake news on media has been an important issue. This is especially true considering the wide spread of rumors on popular social networks such as Twitter. Various kinds of techniques have been proposed for automatic rumor detection. In this work, we study the application of graph neural networks for rumor classification at a lower level, instead of applying existing neural network architectures to detect rumors. The responses to true rumors and false rumors display distinct characteristics. This suggests that it is essential to capture such interactions in an effective manner for a deep learning network to achieve better rumor detection performance. To this end we present a simplified aggregation graph neural network architecture. Experiments on publicly available Twitter datasets demonstrate that the proposed network has performance on a par with or even better than that of state-of-the-art graph convolutional networks, while significantly reducing the computational complexity.
Identifying fake news on the media has been an important issue. This is especially true considering the wide spread of rumors on the popular social networks such as Twitter. Various kinds of techniques have been proposed for automatic rumor detection. In this work, we study the application of graph neural networks for rumor classification at a lower level, instead of applying existing neural network architectures to detect rumors. The responses to true rumors and false rumors display distinct characteristics. This suggests that it is essential to capture such interactions in an effective manner for a deep learning network to achieve better rumor detection performance. To this end we present a simplified aggregation graph neural network architecture. Experiments on publicly available Twitter datasets demonstrate that the proposed network has performance on a par with or even better than that of state-of-the-art graph convolutional networks, while significantly reducing the computational complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.