This paper presents the inaugural character recognition competition for street view shop signs, including the associated tasks, datasets, participating teams, the winning team's solution, and justification for the award.
End-to-end scene text spotting has recently gained great attention in the research community. The majority of existing methods rely heavily on the location annotations of text instances (e.g., wordlevel boxes, word-level masks, and char-level boxes). We demonstrate that scene text spotting can be accomplished solely via text transcription, significantly reducing the need for costly location annotations. We propose a query-based paradigm to learn implicit location features via the interaction of text queries and image embeddings. These features are then made explicit during the text recognition stage via an attention activation map. Due to the difficulty of training the weakly-supervised model from scratch, we address the issue of model convergence via a circular curriculum learning strategy. Additionally, we propose a coarse-to-fine crossattention localization mechanism for more precisely locating text instances. Notably, we provide a solution for text spotting via audio annotation, which further reduces the time required for annotation. Moreover, it establishes a link between audio, text, and image modalities in scene text spotting. Using only transcription annotations as supervision on both real and synthetic data, we achieve competitive results on several popular scene text benchmarks. The proposed method offers a reasonable trade-off between model accuracy and annotation time, allowing simplification of large-scale text spotting applications.
CCS CONCEPTS• Applied computing → Optical character recognition; • Computing methodologies → Scene understanding; • Human-centered computing → Human computer interaction (HCI).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.