The temperature dependence of the excitonic photoluminescence (PL) and nonlinear absorption characteristics of CdTe nanocrystals (NCs)/polyvinyl alcohol (PVA) film are investigated using steady-state/time-resolved PL spectroscopy and Z-scan methods. The excitonic PL peaks of CdTe NCs can be observed at the wavelengths from 560 to 670 nm, with size changes from 2.1 to 3.9 nm. From the temperature-dependent PL spectra, the smaller photon energy of the PL emission peak, the rapidly decreasing PL intensity, and the wider linewidth are observed with increasing temperature from 80 to 300 K. It is revealed that the exciton PL is composed of both trapped state and band-edge excitonic state, which presents biexponential fitting dynamics. The short-lived species is due to the surface-trapped state recombination in NCs, which has a photogenerated trapped channel and a time-resolved peak shift. The species with a long-lived lifetime is ascribed to the intrinsic excitonic recombination. Through the femtosecond Z-scan method, the nonlinear absorption coefficient becomes smaller with the increase in the size of the NCs. The optical properties of the CdTe NC/PVA film show the potential of II-VI traditional NCs as display and luminescent materials that can utilize the combination of exciton PL and nonlinear absorption for expanded functionality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.