Background Premature ovarian insufficiency (POI) is a refractory disease that seriously affects the reproductive health of women and is increasing in incidence and prevalence globally. There is enormous demand to improve fertility in women with POI, while there is still lack of effective therapeutic methods in clinic. Cell-free fat extract (CEFFE) has been reported to contain thousands of active proteins which possess the ability to promote tissue repair in other diseases. In our study, we aimed to observe the efficacy and biosecurity of CEFFE on the repair of ovarian function and fertility of mice with POI and further explore the underlying mechanism. Methods In vivo, POI mice model, established by cyclophosphamide (CTX, 120 mg/kg) and busulfan (BUS, 12 mg/kg), was treated with CEFFE via the tail vein every two days for 2 weeks. Then, the weight of ovaries, estrous cycle and follicle count by H&E staining were measured. The content of AMH, E2 and FSH in serum was measured by Enzyme-linked immunosorbent assay. Fertility was evaluated by the number of oocytes retrieved, the development of embryos in vitro and the litter size. Biosecurity of parent mice and their pups were examined by body mass and visceral index. The proliferation and apoptosis of cells in ovaries were examined by immunohistochemistry and transmission electron microscopy. Furthermore, the mRNA-Seq of mouse ovarian granulosa cells was performed to explore underlying mechanism of CEFFE. In vitro, KGN cell line and human primary ovarian granulosa cells (hGCs) were treated with 250 μM CTX for 48 h with/without CEFFE. The proliferative ability of cells was detected by cell counting kit-8 assay (CCK-8) and EDU test; the apoptosis of cells was detected by TUNEL and flow cytometry. Results CEFFE recovered the content of AMH, E2 and FSH in serum, increased the number of follicles and the retrieved oocytes of POI mice (P < 0.05). CEFFE contributed to the development of embryos and improved the litter size of POI mice (P < 0.05). There was no side effect of CEFFE on parent mice and their pups. CEFFE contributed to the proliferation and inhibited the apoptosis of mouse granulosa cells in ovary, as well as in human ovarian granulosa cells (including KGN cell line and hGCs) (P < 0.05). Conclusions The treatment of CEFFE inhibited the apoptosis of granulosa cells and contributed to the recovery of ovarian function, as well as the fertility of mice with POI.
The damaged endometrium and the formation of fibrosis are key barriers to pregnancy and further lead to infertility. However, how to promote endometrium repair is always a challenge. Here, a bioactive injectable and self‐healing hydrogel is developed by physically combination of thiolated polyethylene (PEG), Cu2+ and cell‐free fat extract (CEFFE, CF) for endometrial regeneration and fertility. By inheriting the advantages of various active proteins contained in CEFFE, it could induce the overall repair of endometrial microenvironment for intrauterine adhesion (IUA). In vitro, CF@Cu‐PEG reduces endometrial cell apoptosis by more than 50%, and increases angiogenesis by 92.8%. In the IUA mouse, injection of CF@Cu‐PEG significantly reduces the rate of uterine hydrometra and prevents the formation of endometrial fibrosis. Remarkably, CF@Cu‐PEG contributes to the repair of endometrial microstructure, especially increases the number of endometrial pinopodes, significantly improves endometrial receptivity, and increases the pregnancy rate of IUA mice from 7.14% to 66.67%. In summary, through the physically combination of CEFFE and Cu‐PEG, the construction of loaded bioactive injectable hydrogel not only inhibits the IUA, but also induces the self‐repair of endometrial cells in situ and improves fertility, providing a new strategy for IUA repair in clinical application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.