In this paper, modified resol phenolic resin (MPR) and its glass fabric prepreg (MPR/GF prepreg) were fabricated via a hot melt preimpregnated method. To optimize the curing schedule in curing completion, safe processing window, and storage stability conditions, time‐temperature‐transformation diagram dynamic rheological behavior of MPR was established based on such phenomenological changes as viscosity, gelation, and vitrification. The curing behavior of MPR/GF prepreg was further clarified using online monitored dynamic mechanical analysis. At last, thermogravimetric analysis and dynamic mechanical analysis tests were conducted to evaluate the thermomechanical properties of MPR/GF composite. The excellent thermomechanical performance of MPR/GF composite suggests the important role of time‐temperature‐transformation diagram in optimizing the curing cycle and the overall dynamic mechanical properties of the composite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.