To track a non-cooperative hypersonic glide vehicle (HGV) without any precise information, an approach to the state estimation is presented based on a robust UKF-based filter (RUKFBF) in this paper. The HGV has an uncertain reentry motion because of unknown maneuvers which is a primary factor leading to degradation of tracking accuracy. Aiming at enhancing accuracy, the strong tracking algorithm (STA) is introduced to addressing the model error caused by a bank-reversal maneuver of HGV. Furthermore, the Huber technique is employed to deal with possible measurement model errors. In the RUKFBF, mutual interferences are suppressed between the STA and the Huber technique via two strategies. The one is that the calculation of the fading factor in the STA adopts an unmodified measurement noise covariance, and the other one is that two judgment criteria are proposed to limit large fading factors in the presence of measurement model errors. To simulate real tracking scenarios, the RUKFBF is tested through tracking a HGV trajectory considering a practical guidance strategy. Simulation results demonstrate the effectiveness of the RUKFBF in the presence of model errors and the observability of the estimated state.
For the terminal guidance problem of a missile intercepting a maneuvering target, a profile-tracking-based adaptive guidance law is proposed with inherent continuity in this paper. To flexibly and quantitatively control the convergence rate of the line-of-sight rate, a standard tracking profile is designed where the convergence rate is analytically given. Then, a nonsingular fast terminal slidingmode control approach is used to track the profile. By estimating the square of the upper bound of target maneuver, an adaptive term is constructed to compensate the maneuver. Therefore, no information of target acceleration is required in the derived law. Stability analysis shows that the tracking error can converge to a small neighborhood of zero in finite time. Furthermore, a guidance-command-conversion scheme is presented to convert the law into the one appropriate for endoatmospheric interceptions. Simulation results indicate that the proposed law is effective and outperforms existing guidance laws.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.