Compressed sensing (CS) leverages the sparsity prior to provide the foundation for fast magnetic resonance imaging (fastMRI). However, iterative solvers for ill-posed problems hinder their adaption to time-critical applications. Moreover, such a prior can be neither rich to capture complicated anatomical structures nor applicable to meet the demand of high-fidelity reconstructions in modern MRI.Inspired by the state-of-the-art methods in image generation, we propose a novel attention-based deep learning framework to provide high-quality MRI reconstruction. We incorporate large-field contextual feature integration and attention selection in a generative adversarial network (GAN) framework. We demonstrate that the proposed model can produce superior results compared to other deep learning-based methods in terms of image quality, and relevance to the MRI reconstruction in an extremely low sampling rate diet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.