Several described growth factors influence the proliferation and regeneration of the intestinal epithelium. Using a transgenic mouse model, we identified a human gene, R-spondin1, with potent and specific proliferative effects on intestinal crypt cells. Human R-spondin1 (hRSpo1) is a thrombospondin domain-containing protein expressed in enteroendocrine cells as well as in epithelial cells in various tissues. Upon injection into mice, the protein induced rapid onset of crypt cell proliferation involving beta-catenin stabilization, possibly by a process that is distinct from the canonical Wnt-mediated signaling pathway. The protein also displayed efficacy in a model of chemotherapy-induced intestinal mucositis and may have therapeutic application in gastrointestinal diseases.
The R-spondin (Rspo) protein family is a recently described group of four distinct human secreted proteins. Reported activities for Rspo proteins include essential roles in vertebrate development and their ligand-type activities overlap substantially with those of the canonical Wnt ligands in that both Rspo and canonical Wnt signaling result in the activation of beta-catenin. In a general functional screen for human secreted proteins using transgenic mouse models, we identified human R-spondin1 (hRspo1) protein as a potent and specific mitogen for the gastrointestinal epithelium and demonstrated a potential therapeutic application for the protein in mouse models of cancer therapy-induced mucositis. In contrast to previous studies, our data indicated only partial overlap between Wnt and Rspo ligand activities, suggesting that there may be independent receptor/signaling pathways for Rspo proteins that intersect those of Wnt at the level of beta-catenin. Here we summarize the current reported data on the Rspo family and discuss these results in terms of alternate mechanisms of action. We have extended our observations on the potential therapeutic application of Rspo proteins by showing that all four human Rspo family members are capable of inducing epithelial proliferation and report the first non-vertebrate Rspo family member.
In Drosophila embryos, the loss of sprouty gene function enhances branching of the respiratory system. Three human sprouty homologues (h-Spry1-3) have been cloned recently, but their function is as yet unknown [1]. Here, we show that a murine sprouty gene (mSpry-2), the product of which shares 97% homology with the respective human protein, is expressed in the embryonic murine lung. We used an antisense oligonucleotide strategy to reduce expression of mSpry-2 by 96%, as measured by competitive reverse transcriptase PCR, in E11. 5 murine embryonic lungs cultured for 4 days [2]. Morphologically, the decrease in mSpry-2 expression resulted in a 72% increase in embryonic murine lung branching morphogenesis as well as a significant increase in expression of the lung epithelial marker genes SP-C, SP-B and SP-A. These results support a striking conservation of function between the Drosophila and mammalian sprouty gene families to negatively modulate respiratory organogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.