The aim of this paper is to study the fast computation of the lower and upper bounds on the value function for utility maximization under the Heston stochastic volatility model with general utility functions. It is well known there is a closed form solution of the HJB equation for power utility due to its homothetic property. It is not possible to get closed form solution for general utilities and there is little literature on the numerical scheme to solve the HJB equation for the Heston model. In this paper we propose an efficient dual control Monte Carlo method for computing tight lower and upper bounds of the value function. We identify a particular form of the dual control which leads to the closed form upper bound for a class of utility functions, including power, non-HARA and Yarri utilities. Finally, we perform some numerical tests to see the efficiency, accuracy, and robustness of the method. The numerical results support strongly our proposed scheme.MSC 2010: 49L20, 90C46
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.