The generalizability of PBE solvers is the key to the empirical synthesis performance. Despite the importance of generalizability, related studies on PBE solvers are still limited. In theory, few existing solvers provide theoretical guarantees on generalizability, and in practice, there is a lack of PBE solvers with satisfactory generalizability on important domains such as conditional linear integer arithmetic (CLIA). In this paper, we adopt a concept from the computational learning theory, Occam learning, and perform a comprehensive study on the framework of synthesis through unification (STUN), a state-of-the-art framework for synthesizing programs with nested if-then-else operators. We prove that Eusolver, a state-of-the-art STUN solver, does not satisfy the condition of Occam learning, and then we design a novel STUN solver, PolyGen, of which the generalizability is theoretically guaranteed by Occam learning. We evaluate PolyGen on the domains of CLIA and demonstrate that PolyGen significantly outperforms two state-of-the-art PBE solvers on CLIA, Eusolver and Euphony, on both generalizability and efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.