Genetic investigations of malaria require a genome-wide, high-resolution linkage map of Plasmodium falciparum . A genetic cross was used to construct such a map from 901 markers that fall into 14 inferred linkage groups corresponding to the 14 nuclear chromosomes. Meiotic crossover activity in the genome proved high (17 kilobases per centimorgan) and notably uniform over chromosome length. Gene conversion events and spontaneous microsatellite length changes were evident in the inheritance data. The markers, map, and recombination parameters are facilitating genome sequence assembly, localization of determinants for such traits as virulence and drug resistance, and genetic studies of parasite field populations.
Congenital heart disease is the most prevalent cause of infant morbidity and mortality in developed countries. The mechanisms responsible for many specific types of congenital cardiac malformations are strongly associated with gene abnormalities. However, at this time no strategies for gene therapy of the various congenital heart malformations have been investigated. In the present studies we focus on Eomesodermin (Eomes), a T-box transcription factor expressed in developing vertebrate mesoderm. Although Eomes is required for early mesodermal patterning and differentiation, the role of Eomes in cardiac development is unknown. In the present studies we demonstrate that Eomes is expressed in the developing heart, with a pronounced myocardial distribution in the Xenopus ventricle during late cardiac development. Using either a conditional dominant-interfering approach (GR-Eomes--engrailed) or an Eomes-activating approach (GR-Eomes-VP16) we demonstrate that manipulating Eomes activity during late cardiac development can either suppress ventricular development (GR-Eomes-enR) or increase ventricular myocardial size (GR-Eomes-VP16). Thus, a potential gene therapy approach for treating both congenital ventricular hypoplasia (e.g., the hypoplastic left heart syndrome) and hypertrophic cardiomyopathy is hypothetically implicit from the present results.
This study aimed to assess the effects of microbial inoculants and growth stage on fermentation quality, microbial community, and in vitro degradability of Caragana silage from different varieties. Caragana intermedia (CI) and Caragana korshinskii (CK) harvested at the budding (BU) and blooming (BL) stages were used as raw materials to prepare silage, respectively. The silages at each growth stage were treated for ensiling alone (control), with 5% rice bran (RB), a combination of RB with commercial Lactobacillus plantarum (RB + LP), and a combination of RB with a selected strain Lactobacillus plantarum L694 (RB + L694). The results showed that the crude protein (CP) content of CI was higher than that of CK, and delay in harvest resulted in greater CP content in Caragana at BL stage. After 60 days of fermentation, the concentrations of lactic acid (LA) in the RB + L694 treatments were higher than those in control treatments (p < 0.05), while the pH, concentrations of NH3-N, neutral detergent fiber with the addition of α-amylase (aNDF) were lower than those in control treatments (p < 0.05). RB + L694 treatments could decrease acid detergent fiber (ADF) content except in CIBL. In CK silages, adding RB + L694 could reduce bacterial diversity and richness (p < 0.05). Compared with the control, RB + L694 treatment contained higher Lactobacillus and Enterobacter (p < 0.05). In vitro NDF and DM degradability (IVNDFD and IVDMD) was mostly affected by growth period, and additive RB + l694 treatment had higher IVDMD and lower IVNDFD than other treatments (p < 0.05). Consequently, the varieties, growth stages, and additives could influence the fermentation process, while the blooming stage should be selected in both Caragana. Furthermore, the results showed that RB and L. plantarum could exert a positive effect on fermentation quality of Caragana silage by shifting bacterial community composition, and RB + L694 treatments outperformed other additives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.