Colorectal cancer is one of the most common malignancies. Aberrant expressed microRNAs (miRNAs) have been demonstrated to have strong associations with colorectal cancer by repressing their targets. Therefore, miRNAs are thought to have significant promise in the diagnosis and prognosis of colorectal cancer. Previous studies indicated that miR-155 and collagen triple helix repeat containing 1 (CTHRC1) were both involved in pathogenesis of colorectal cancer, but the underlying mechanisms of miR-155 and CTHRC1 are still unknown. The present study aimed to investigate the biological functions of miR-155 and CTHRC1 in colorectal cancer. Reverse transcription-quantitative polymerase chain reaction was used to examine miR-155 and CTHRC1 expression levels. A dual-luciferase reporter assay was applied to verify the target interaction between miR-155 and CTHRC1. Proliferation, cell cycle, apoptosis, cell migration and invasion were measured using the MTT assay, flow cytometry and Transwell assays, respectively. Results showed that miR-155 expression was decreased, but CTHRC1 expression was increased in colorectal cancer tissue and cell lines. Furthermore, it was demonstrated that miR-155 negatively regulated CTHRC1. Additionally, miR-155 overexpression suppressed cell proliferation, induced cell cycle arrest and promoted cell apoptosis, while an inhibitor of miR-155 facilitated cell proliferation and cell cycle and repressed apoptosis. Transwell experiments indicated that miR-155 inhibited the cell migratory and invasive abilities of HT-29 cells, but miR-155 inhibitor enhanced these abilities of HT-29 cells. These results suggested that miR-155 prevented colorectal cancer progression and metastasis via silencing CTHRC1 in vitro, which provides evidence for miR-155 and CTHRC1 as a novel anti-onco molecular target for the treatment of colorectal cancer in the future.
Surface acoustic wave (SAW) devices using embedded interdigital transducers (IDTs) on an AlN/diamond/Si layered substrate are fabricated, and their performances are investigated. The Sezawa mode is the dominant resonance with the highest resonant frequency up to 17.7 GHz, a signal amplitude of 20 dB, and an electromechanical coupling coefficient of 0.92%. Comparing these SAW devices with those having the conventional IDTs on the same layered structure, the output SAW power and resonant frequency of devices are improved by 10.7% and 1.1%, respectively, for the embedded IDT devices. This is because the different field distribution leads to the different Bragg reflection and phase velocity for the two types of IDTs. The radiation frequency characteristics indicate that the advantages of the embedded IDTs would be useful for high frequency, high power applications such as monolithic integrated millimeter-wave integrated circuit and high speed communications.
In nanometer bulk CMOS processes, multi-node charge collection induced by a heavy-ion strike is prevalent. Pulse quenching caused by charge sharing between the struck node (termed as active device) and the following gate (termed as passive device) has been widely studied in digital circuits. This paper firstly demonstrates that the pulse quenching effect also exists between the adjacent stages of analog circuits and can be used to mitigate analog single-event transient (ASET) perturbation. Contrary to digital circuits, whose propagated SET is minimized with the charge collected by passive device maximized, simulation results indicate that there is an optimal spacing between the active and passive devices in analog circuits. When the spacing is too close, the SET induced by the hit node is efficiently mitigated by pulse quenching effect, but the disturbance caused by the charge sharing collection in passive device becomes dominant. Simulation results show that pulse quenching effect has a dual role in ASET mitigation. This paper provides innovative guidance to the radiation-hardening design for analog circuits.
In analog circuit design, the bulks of MOSFETs can be tied to their respective sources to remove body effect. This paper models and analyzes the sensitivity of single-event transients (SETs) in common source (CS) amplifier with bulk tied to source (BTS) in 40 nm twin-well bulk CMOS technology. The simulation results present that the proposed BTS radiation-hardened-by-design (RHBD) technique can reduce charge collection and suppress the SET induced perturbation effectively in various input conditions of the circuit. The detailed analysis shows that the mitigation of SET is primarily due to the forward-bias of bulk potential. This technique is universally applicable in radiation-hardening design for analog circuits with negligible penalty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.