High quality lumbers produced from Eucalyptus plantations can be used to make higher value-added solid wood products. Moisture flow affects shrinkage, deformation, and quality of Eucalyptus wood during conventional drying. In this study, 50 and 100 mm long samples were dried using a conventional drying method. The drying curves, drying rate, moisture content (MC) gradient and distribution, moisture flow, and shrinkage during the drying process were investigated. The results show: Drying was much faster in the first 15 h for all samples and became slow as MC decreased. The drying rate above fiber saturated point (FSP) was about 3.5 times of that below FSP for all samples. The drying rate of 50 mm samples above and below FSP is 1.40 and 1.33 times of 100 mm samples; MC gradients are greater in tangential, radial directions, and cross-sections for both samples when the MC is above FSP, especially at an average MC of 50%. MC gradient along the tangential and radial direction depends on the samples size and MC stages. The short samples have much greater MC gradients than the longer samples above FSP. Moisture distributions on the cross-sections of wood coincide with the moisture gradient in the cross-sections. At an average MC of 50%, the moisture distributions of 50 mm are highly uneven, while they are relatively even in the middle of 100 mm samples, and become much more even at the end of the sample. Moisture distributions become even as MC decreases in all of the samples. Water migration directions vary by state of water. In the short samples, most free water migrates more in the fiber direction from the wood center toward the end surfaces, but bound water diffusion becomes weak. The collapse in the 50 mm samples is significantly larger than that in the 100 mm samples, indicating that the collapse is affected by the dimension of the sample.
Supercritical carbon dioxide (ScCO2), known for such features as good solubility and mass transfer properties, can be an efficient drying medium for various materials, such as wood, by filling the pore space and dissolving water in the cell cavity without altering the microstructure. In this study, two specimens of Juglans mandshurica wood with a length of 30 mm and 140 mm were subjected to ScCO2 dewatering under four different pressure and temperature conditions. The results showed that the drying rate is mainly influenced by pressure and temperature, with pressure having the more significant effect. Moreover, the efficiency of dewatering was not dependent on the sample length under the same conditions. The moisture content (MC) was the same along the longitudinal direction throughout both the surfaces and core of the wood. While there were no significant differences in dewatering rate between tangential and radial directions and lengths of samples, significant MC gradient differences were noted along wood in radial and tangential directions. During ScCO2 dewatering, the dominant water transfer occurred from the middle towards the end surfaces along the wood’s longitudinal directions. Furthermore, ScCO2 dewatering did not result in any shrinkage or significant drying stress, but it did cause some swelling in Juglans mandshurica wood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.